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Summary .This paper is concerned with parameter estimation for inhomogeneous spatial point
processes with a regression model for the intensity function and tractable second order prop-
erties (K-function). Regression parameters are estimated using a Poisson likelihood score
estimating function and in a second step minimum contrast estimation is applied for the resid-
ual clustering parameters. Asymptotic normality of parameter estimates is established under
certain mixing conditions and we exemplify how the results may be applied in ecological studies
of rain forests.

1. Introduction

In this paper we study theoretical properties of an estimation procedure for inhomogeneous
spatial point processes and show how the results may be used in studies of tropical rain
forest ecology. A question of particular interest is how the very high number of different rain
forest tree species continue to coexist, see e.g. Burslem et al. (2001) and Hubbell (2001).
Aggregation of trees of the same species is hypothesized to promote diversity although
the causes of aggregation remain unclear (Seidler and Plotkin, 2006). One explanation is
the so-called niche assembly hypothesis that different species benefit from different habitats
determined e.g. by topography or soil properties. However, the aggregation may also be due
to seed dispersal around parent trees. Incisive studies of the different diversity hypotheses
require statistical methods which allow to disentangle the various sources of aggregation.

In recent years huge amounts of data have been collected in tropical rain forest plots. The
data sets consist of measurements of soil properties, digital terrain models, and individual
locations of all trees growing in the plots. We model the set of tree locations for a particular
species as a realization of a spatial point process X on R

2 with intensity function of the
form

ρβ(u) = ρ(z(u)βT), u ∈ R
2,

where ρ is a positive strictly increasing differentiable function, z(u) is the covariate vector
associated with the spatial location u, and β is a regression parameter. Evidence of the
niche assembly hypothesis may be obtained by assessing the magnitudes of the components
of β.

The second-order properties of X are determined by the so-called pair correlation func-
tion g (see Section 2). Translation-invariance of g implies second-order intensity reweighted
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stationarity (Baddeley et al., 2000) in which case the so-called K-function is well-defined
and given in terms of an integral involving g (cf. (1) in Section 2). A parametric model gψ
is often imposed for the pair correlation function and hypotheses regarding clustering may
be formulated in terms of ψ. Seidler and Plotkin (2006) e.g. study the relation between
estimates of ψ and the modes of seed dispersal for different species. They, however, neglect
possible aggregation due to covariates. For a Poisson process, g is identically equal to one
due to the independence properties of Poisson processes.

If X is not a Poisson process, evaluation of the likelihood function in general requires ap-
plication of Markov chain Monte Carlo (Møller and Waagepetersen, 2003) which especially
in case of Cox and cluster processes can be computationally very difficult. However, regard-
less whether X is a Poisson process or not, a computationally easy approach to estimate β
is to use the Poisson likelihood score function as an estimating function (Schoenberg, 2005),

see Section 3. Consistency of the resulting estimate β̂ is studied in Schoenberg (2005) while

Waagepetersen (2007) obtains asymptotic normality of β̂ for a fixed observation window em-
ploying infinite divisibility of the inhomogeneous Neyman-Scott processes considered in this
paper. Regarding ψ, Waagepetersen (2007) suggests a two-step estimation procedure where
ψ is estimated using minimum contrast estimation based on the theoretical K-function Kψ

and an estimate of Kψ depending on β. Waagepetersen (2007), however, does not provide
a theoretical study of this approach for estimating ψ.

It is not obvious that the second step of the two-step procedure produces useful estimates
of ψ since the estimate of the K-function is biased when β̂ is plugged in for the true value of
β. Under certain mixing conditions, however, we show that the parameter estimate (β̂, ψ̂)
in fact does enjoy the usual desirable properties of consistency and asymptotic normality.
Our results extend the results for ψ̂ in Heinrich (1992) and Guan and Sherman (2007) to
the important case of inhomogeneous point processes which are indispensable in modern
point process statistics. We moreover provide less restrictive conditions for the asymptotic
normality of β̂ than those in Waagepetersen (2007) and Guan and Loh (2007).

Our asymptotic results for ψ̂ are important for two reasons. First, the asymptotic
normality enables inference regarding ψ when hypotheses regarding the clustering of X are
considered. Second, the consistency of ψ̂ gives a theoretical basis for the plug-in approach
in Waagepetersen (2007) who suggested to plug in gψ̂ for the unknown g when evaluating

the asymptotic covariance matrix for β̂.

Some background concerning Cox and cluster point processes and product densities is
given and some basic assumptions stated in Section 2. The two-step procedure for parameter
estimation and its asymptotic properties are considered in Section 3. In Section 4 we
consider a data example where we relate clustering to different modes of seed dispersal
as in Seidler and Plotkin (2006). We, however, refine the analysis by taking into account
inhomogeneity due to environmental covariates and uncertainty of clustering parameter
estimates. A few open problems are discussed in Section 5.

2. Some basic background and assumptions

This section describes the specific examples of point processes considered in this paper and
gives some background on product densities for point processes.
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2.1. Inhomogeneous Cox point processes
A Cox process X is defined in terms of a random intensity function Λ where given Λ = λ,
X is a Poisson process with intensity function λ. For a log Gaussian Cox process (LGCP),
log Λ is a Gaussian process.

A Neyman-Scott process with Poisson numbers of offspring is a union ∪c∈CXc where
C is a ‘mother’ Poisson process of intensity κ > 0. Given C, Xc, c ∈ C, are independent
Poisson processes with intensity functions αk(· − c) where α > 0 is the expected number
of offspring for each mother point and k(·) is a probability density determining the spread
of offspring around their mother. A so-called modified Thomas process is obtained when k
is the density of a bivariate normal distribution N(0, ω2I). A Thomas process with e.g. a
large κ and a small ω is composed of many spatially tight clusters while a small κ and a
large ω produces few and widely dispersed clusters.

A Neyman-Scott process can also be viewed as a Cox process with

Λ(u) = α
∑

c∈C

k(u − c)

and inhomogeneous Neyman-Scott processes are obtained by multiplying Λ(u) by e.g. a
log-linear term exp(z(u)βT) (Waagepetersen, 2007). Shot-noise Cox processes provide a
further extension where the fixed mean cluster size α is replaced by a random variable, see
Møller (2003) and Waagepetersen and Schweder (2006).

2.2. Product densities and basic assumptions
Let ρβ,k(u1, . . . , uk) denote the kth order product density of X . For locations ui in infinites-
imally small regions Ai of volumes dAi, i = 1, . . . , k, ρβ,k(u1, . . . , uk)dA1 · · ·dAk is the joint
probability that X has a point in each Ai. The pair correlation function is

g(u, v) =
ρβ,2(u, v)

ρβ(u)ρβ(v)
.

Throughout the paper we assume the following:

B1 bounded covariates

‖z(u)‖ ≤ K1, u ∈ R
2, for some K1 <∞.

B2 the product densities ρβ,k are of the form

ρβ,k(u1, . . . , uk) = ρk(u1, . . . , uk)

k
∏

i=1

ρβ(ui)

where ρk is the kth order product density of a stationary point process on R
2.

B3 ρ2 and ρ3 are bounded and there is a K2 so that for all u1, u2 ∈ R
2,

∫

|ρ3(0, v, v +
u1) − ρ1(0)ρ2(0, u1)|dv < K2 and

∫

|ρ4(0, u1, v, v + u2) − ρ2(0, u1)ρ2(0, u2)|dv < K2.
B4 Wn = [an, bn] × [cn, dn] where b− a > 0 and d− c > 0.

The assumption B1 of bounded covariates is not a serious restriction from a practical point

of view. Letting ρ
(l)
β denote the lth order derivative of ρβ , B1 implies k1 ≤ ρβ(u), |ρ(l)

β (u)| ≤
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K3, l = 1, 2, for constants k1 > 0 and K3 < ∞. The assumption B2 e.g holds if X
is an independent thinning of a stationary point process with probability of retaining a
point at u proportional to ρβ(u). Under B1, both log Gaussian Cox processes and in-
homogeneous Neyman-Scott processes fall into this category. Note that stationarity im-
plies ρk(u1, . . . , uk) = ρk(0, u2 − u1, . . . , uk − u1). In the current setting, the pair correla-
tion function g of X coincides with ρ2 and with a convenient abuse of notation we write
g(u, v) = g(v − u) where g(h) = ρ2(0, h). Moreover, the K-function is given by

K(t) =

∫

‖h‖≤t

g(h)dh, t ≥ 0. (1)

If g is isotropic, g(h) can be recovered fromK(t) by differentiating: g(h) = K ′(‖h‖)/(2π‖h‖).
The assumption B3 of weak dependence holds for many commonly applied point pro-

cesses including Poisson cluster processes and log Gaussian Cox processes with an absolutely
integrable correlation function, see Guan and Sherman (2007). Rectangular observation
windows B4 are assumed for ease of exposition and this can be relaxed. It is important,
though, that for any h ∈ R

2, limn→∞ |Wn|/|Wn ∩Wn,h| = 1 where Wn,h is Wn translated
by h.

We call assumptions B1-B4 basic assumptions since they allow us to verify (see Ap-
pendix D) the basic property of consistency for the semi-parametric K-function estimate
(3) in Section 3. Hence these assumptions are not specific for our result on asymptotic
normality in Section 3.1.

2.3. Specific examples of pair correlation functions
For a Thomas process the pair correlation function is

g(κ,ω)(h) = 1 + exp(−‖h‖2/(4ω2))/(4πω2κ), κ, ω > 0,

while it is
gψ(h) = exp(cψ(h))

for a log Gaussian Cox process with covariance function cψ(h) for the Gaussian field. One
example of a covariance function is the exponential

c(σ2,φ)(h) = σ2 exp(−‖h‖/φ), σ2, φ > 0,

where σ2 is the variance and φ is the correlation scale parameter.
Note that although the parameters of a Thomas process or a log Gaussian Cox process

have distinct interpretations in terms of the cluster generating mechanism or the Gaussian
field this is not entirely so in relation to the pair correlation function. For a given h and
the Thomas process, for example, both increasing values of κ and decreasing values of ω
lead to decreasing pair correlation g(κ,ω)(h). Similarly, for a log Gaussian Cox process with
exponential covariance function, both decreasing σ2 and decreasing φ lead to decreasing
gψ(h).

The K-function for a Thomas process is

K(κ,ω)(t) = πt2 + [1 − exp(−t2/(4ω2))]/κ

where πt2 is theK-function for a Poisson process. Hence, the difference between the Thomas
process and the Poisson process K-functions is less than 1/κ and increases monotonely to
1/κ as t increases. The increase to 1/κ is quicker when ω is small. In other words, for fixed
t and κ, K(κ,ω)(t) tends to the Poisson K-function at t when ω increases.
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3. The two-step estimation procedure

Suppose X is observed within Wn, β ∈ R
p, and ψ ∈ R

q. We then first obtain β̂n by solving
un,1(β) = 0 where

un,1(β) =
∑

u∈X∩Wn

ρ
(1)
β (u)

ρβ(u)
−

∫

Wn

ρ
(1)
β (u)du.

If X is Poisson, un,1 is simply the score function given by the first derivative of the log

likelihood function. Second, ψ̂n is obtained by minimizing mn(ψ) = mn,β̂n
(ψ) where

mn,β(ψ) =

∫ r

rl

(K̂n,β(t)
c −Kψ(t)c)2dt, (2)

rl, r, and c are user-specified constants, and

K̂n,β(t) =

6=
∑

u,v∈X∩Wn

1[‖u− v‖ ≤ t]

ρβ(u)ρβ(v)|Wn ∩Wn,u−v|
(3)

is an estimate (Baddeley et al., 2000) of the theoretical K-function Kψ(t). We denote by

β∗ and ψ∗ the true values of β and ψ and note that K̂n,β∗(t) is unbiased for Kψ∗(t). An
excellent account of practical aspects of minimum contrast estimation is given in Section 6.1
in Diggle (2003) where rl = 0. However, in Section 3.1 we for technical reasons need rl > 0
when c < 1. As in Guan and Sherman (2007) it is possible to introduce a weight function
in (2) but we skip this to keep the notation simpler.

3.1. Joint asymptotic normality of (β̂n, ψ̂n)
Let

un,2(β, ψ) = −|Wn|
dmn,β(ψ)

dψ
= |Wn|2c

∫ r

rl

(K̂n,β(t)
c −Kψ(t)c)Kψ(t)c−1K

(1)
ψ (t)dt

(assuming that Kψ is differentiable, cf. N2 below). Then the two-step estimating procedure
corresponds to solving

un(β, ψ) = (un,1(β), un,2(β, ψ)) = 0.

By a Taylor-expansion, un,2(β
∗, ψ∗) can be approximated by

ũn,2(β
∗, ψ∗) = |Wn|2c2

∫ r

rl

(K̂n,β∗(t) −Kψ∗(t))Kψ∗(t)2c−2K
(1)
ψ∗ (t)dt

and we define
Σ̃n = |Wn|−1

Var
(

un,1(β
∗), ũn,2(β

∗, ψ∗)
)

.

From a mathematical point of view, ũn,2(β
∗, ψ∗) is easier to handle than un,2(β

∗, ψ∗) since

we avoid the exponent c for K̂n,β∗(t).
Define further

In,11 =
1

|Wn|

∫

Wn

(ρ
(1)
β∗ (u))Tρ

(1)
β∗ (u)

ρβ∗(u)
du, (4)
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In,12 = −2c2
∫ r

rl

Hn,β∗(t)K2c−2
ψ∗ (t)K

(1)
ψ∗ (t)dt

where

Hn,β∗(t) = E
d

dβT
K̂n,β(t)|β=β∗ = −2

∫

W 2
n

1[‖u− v‖ ≤ t]

|Wn ∩Wn,u−v|
ρ
(1)
β∗ (u)

ρβ∗(u)
gψ∗(u− v)dudv

and

I22 = 2c2
∫ r

rl

Kψ∗(t)2c−2(K
(1)
ψ∗ (t))TK

(1)
ψ∗ (t)dt.

We finally need the mixing coefficient (Politis et al., 1998)

αa1,a2
(m) ≡ sup{|P (A1 ∩A2) − P (A1)P (A2)| : A1 ∈ F(E1),

A2 ∈ F(E2), |E1| ≤ a1, |E2| ≤ a2, d(E1, E2) ≥ m, E1, E2 ∈ B(R2}

where B(R2) denotes the set of Borel sets in R
2, d(E1, E2) is the minimal distance between

E1 and E2, and F(Ei) is the σ-algebra generated by X ∩ Ei, i = 1, 2.
The following result is verified in Appendix A.

Theorem 1. Consider a point process X with intensity function ρβ∗ and K-function
Kψ∗. In addition to B1-B4 assume

N1 rl > 0 if c < 1; otherwise rl ≥ 0.
N2 ρβ and Kψ are twice continuously differentiable as functions of β and ψ.

N3 I22 is positive definite, Σ̃n converges to a positive definite matrix Σ̃, and lim infn→∞ λn,11 >
0 where λn,11 is the smallest eigenvalue of In,11.

N4 ρ4+2δ(u1, · · · , u4+2δ) <∞ for some positive integer δ.
N5 for some a > 8r2,

αa,∞(m) = O(m−d) for some d > 2(2 + δ)/δ. (5)

Then there is a sequence {(β̂n, ψ̂n)}n≥1 for which un(β̂n, ψ̂n) = 0 with a probability tending
to one and where

|Wn|1/2[(β̂n, ψ̂n) − (β∗, ψ∗)]InΣ̃−1/2
n

d→ N(0, I) (6)

with

In =

[

In,11 In,12
0 I22

]

. (7)

In the following two sections 3.2 and 3.3 we discuss in more detail the practical use of this
result and the conditions for it. A simulation study is summarized in Section 3.4.

3.2. Practical issues
Often un(β, ψ) = 0 has a unique solution which then coincides with (β̂n, ψ̂n). The practical

implication of (6) is that for a given n, (β̂n, ψ̂n) is approximately normal with mean (β∗, ψ∗)
and covariance matrix (IT

n )−1Σ̃nI
−1
n (by N3, I−1

n exists for large enough n). The upper block
Σ̃n,11 in Σ̃n is the sum of In,11 and

1

|Wn|

∫

W 2
n

(ρ
(1)
β∗ (u))Tρ

(1)
β∗ (v)(gψ∗(u− v) − 1)dudv. (8)



Two-step estimation for inhomogeneous spatial point processes 7

The more complicated expressions defining Σ̃n,12 = Σ̃T

n,21 and Σ̃n,22 are discussed in Ap-

pendix B. Due to the basic assumptions, the entries in Σ̃n are bounded below and above.
We obtain consistent estimates În and Σ̂n by replacing β∗ and ψ∗ in In and Σ̃n with β̂n
and ψ̂n. The integrals in În are evaluated using numerical quadrature. For ease of imple-
mentation we evaluate the integrals in Σ̂n using Monte Carlo simulations under the fitted
model given by β̂n and ψ̂n. Alternatively one might use numerical quadrature. Regarding
In,12 the following approximation

Hn,β∗(t) ≈ −2Kψ∗(t)

|Wn|

∫

Wn

ρ
(1)
β∗ (u)

ρβ∗(u)
du

is useful. The matrix Σ̃n is mainly used for mathematical convenience and alternatively
one might consider Σn = |Wn|−1

Varun(β
∗, ψ∗).

The approximate covariance for ψ̂n is of the form

I−1
22

[

(In,12)TΣ̃n,11I
n,12 − Σ̃T

n,12I
n,12 − (In,12)TΣ̃n,12 + Σ̃n,22

]

I−1
22

where In,12 = I−1
n,11In,12. The sum of matrices within the parenthesis corresponds to the

variance of ũn,2(β̂n, ψ
∗) which (at least in our examples) is less than the variance Σ̃n,22 of

ũn,2(β
∗, ψ∗) due to the effect of of plugging in β̂n rather than β∗ in (3). This is related to

the observation (Dietrich Stoyan, personal communication) that a more precise estimate of
the K-function is obtained in the stationary case when using an estimated intensity rather
than the true value of the intensity. The intuition is that the estimated β̂ adjust for the
variation of the number of points used in the estimate of K. A curious consequence is that,
in terms of the asymptotic variance for ψ̂n, we are better off using β̂n in the minimum
contrast estimation even if the true β∗ was known.

3.3. Discussion of conditions for asymptotic normality
The condition N1 is a nuisance but is needed for technical reasons so that we can apply
Lemma 2 (Appendix D) with d < 0 in the proofs of Lemma 4 and Lemma 5 in Appendix D.
In practice we approximate the integral (2) using an equispaced right endpoint Riemann
sum. For the numerical value of this approximation the specific choice of rl is not crucial as
long as we just use a very small value of rl. Hence, in practice we just use rl = 0. Condition
N2 is satisfied for many examples of Neyman-Scott and log Gaussian Cox processes but
exclude the well-known Matérn cluster process. Regarding N3, the matrix I22 is positive
definite if there exist distinct rl < t1 < t2 < · · · < tq < r so that the matrix with rows

K
(1)
ψ (ti) has full rank. For a Thomas process with ψ = (log κ, logω), for example, this

is easy to verify with t1 = 2ω
√

− log(0.5) and t2 =
√

2t1. It is hard to say something

general about the conditions on Σ̃n and the smallest eigenvalue of In,11 since they depend

on the behaviour of the covariates on all of R
2. The convergence of Σ̃n may be viewed

as convergence of a spatial average over Wn cf. e.g. (4) and (8). Note moreover that Σ̃n
and In,11 are both covariance matrices (In,11 is the covariance matrix of un,1(β

∗) if X is a
Poisson process). The condition N4 of bounded product densities is not restrictive.

Condition N5 requires that the dependence between parts of the point process observed
in two distinct sets decays at a polynomial rate as a function of the inter-set distance m. In
the nonstationary case, it follows from (1’) at page 3 in Doukhan (1994) that N5 is satisfied if
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the process can be regarded as an independent thinning of a stationary process satisfying N5.
By the same result, N5 holds for Cox processes if the condition is satisfied for the random
intensity function Λ. For many examples of stationary Neyman-Scott processes including
the modified Thomas process, N5 can be verified directly, see Appendix E. Regarding
stationary LGCPs, simple conditions for mixing of stationary Gaussian fields are provided
in Corollary 2 in Doukhan (1994) but are restricted to fields on Z

d, d ≥ 1. From a practical
point of view, however, we can approximate a continuous Gaussian field (Ys)s∈R2 arbitrarily
well by step functions with step heights Ys for s on a fine grid {ε(i, j) : (i, j) ∈ Z

2}, ε > 0,
see also Waagepetersen (2004). The conditions in Kolmogorov and Rozanov (1960) for
strong mixing of Gaussian processes on R e.g. hold in the case of an exponential covariance
function but Kolmogorov and Rozanov (1960) do not consider spatial processes.

3.4. Simulation study
To check how the asymptotic results apply in finite-sample settings we considered a simu-
lation study for an inhomogeneous Thomas process and an LGCP with exponential covari-
ance function. Both point processes were simulated with varying parameter settings within
a 1000 by 500 meter region and we focused on normality of parameter estimates obtained
from the simulations and coverage properties of approximate 95 % confidence intervals. The
simulation study in general confirmed that valid inferences can be based on the asymptotic
results even for moderately sized point patterns (the expected numbers of simulated points
were either 200 or 800). One exception was the case of an inhomogeneous Thomas process
with parameter values κ∗ = 5×10−4, ω∗ = 20, and on average 200 simulated points. This
is a case of weak clustering with on average less than one offspring per mother. With the
small numbers of simulated points it was often hard to distinguish the K-function estimated
from the simulated data from the K-function of a Poisson process. In such cases rather ex-
treme clustering parameter estimates were obtained since the Poisson process is not nested
within the inhomogeneous Thomas process. From a practical point of view one would in
such cases typically use a Poisson process model anyway. For LGCPs, larger variances for
the Gaussian field seemed to imply slower convergence to normality. Details of the entire
simulation study are given in Waagepetersen and Guan (2008).

4. A data example

The tropical tree data sets considered in this section are extracted from a huge data set
collected in the 1000 by 500 meter Barro Colorado Island plot, see Condit et al. (1996),
Condit (1998), and Hubbell and Foster (1983). The plots in Figure 1 show positions of
alive trees in 1995 of the species Acalypha diversifolia (528 trees), Lonchocarpus hepta-
phyllus (836 trees), Capparis frondosa (3299 trees), and altitude on a 5 by 5 meter grid.
The three species have distinct modes of seed dispersal (Wright et al., 2007). The seeds
are dispersed by exploding capsules for Acalypha, by the wind for Lonchocarpus, and by
birds and mammals for Capparis. Seidler and Plotkin (2006) hypothesize that the modes
of seed dispersal is reflected in the spatial patterns of tree locations with tight clusters for
exploding capsules, loose clusters for bird and mammal dispersal, and tightness of clustering
somewhere in between for species with wind dispersal. Seidler and Plotkin (2006) fit homo-
geneous Thomas processes to a large number of species and quantify tightness of clustering
using the parameter ω. We restrict attention to only three species but take into account
inhomogeneity due to the environment and uncertainty of clustering parameter estimates.
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Fig. 1. Locations of Acalypha diversifolia (top left), Lonchocarpus heptaphyllus (top right), Capparis
frondosa (bottom left), and altitude (bottom right).

Note that the parameter ω is just a quantitative summary of clustering and it can not be
directly related to e.g. a mean range of seed dispersal around trees of a given species. This
is because a Thomas process only involves one generation of offspring while the patterns of
rain forest trees are produced by multiple generations of offspring.

For each species we fitted an inhomogeneous Thomas process with

ρβ(u) = exp(z(u)βT)

where the covariate vector z(u) had entries altitude, slope, pH, and soil contents of mineral-
ized nitrogen, phosphorous, and potassium. A stepwise model reduction was subsequently
performed using Wald-tests based on approximate normality of the regression parameter
estimates (cf. (6)). Covariates significant at the 5 % level were elevation and potassium for
Acalypha and Capparis and nitrogen and phosphorous for Lonchocarpus. For Acalypha, the
estimates of the regression parameters for elevation and potassium were 0.02 (0.004,0.04)
and 0.005 (0.002;0.007), respectively (approximate 95 % confidence intervals in paranthe-
ses). For Capparis we obtained 0.03 (0.01;0.05) and 0.004 (0.002;0.006). Hence Acalypha
and Capparis appear to be similar in terms of niche assembly characteristics with preference
for high elevation and high potassium content. Lonchocarpus is quite different and with ni-
trogen and phosphorous parameter estimates -0.03 (-0.04;-0.02) and -0.15 (-0.27;-0.03) it
seems to be a frugal species adapted to soils with low nutrition contents.

The left plot in Figure 2 shows the estimates of ω obtained using only the significant
covariates and with values r = 100 and c = 0.25 chosen on basis of rules of thumb in Diggle
(2003). The lines in the plot show approximate 95 % confidence intervals based on ap-
proximate normality of log ω̂. According to exploratory analyses using cross K-functions,
the three species may be considered uncorrelated. Based on approximately normal test-
statistics given by differences of the log parameter estimates and assuming independence of
the parameter estimates for different species we can clearly reject that Acalypha and Lon-
chocarpus share the same ω while this is not the case when considering Lonchocarpus and
Capparis. For comparison we also show the estimates obtained for homogeneous Thomas
processes, i.e. without adjusting for the covariate effects. It appears that the estimates of
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Fig. 2. Left: dots show estimates of ω for Acalypha (expl. capsules), Lonchocarpus (wind), and
Capparis (bird/mammal) (left to right). The segments indicate approximate 95 % confidence intervals
and triangles show estimates of ω obtained without adjusting for aggregation due to covariates. Right:
curves show for the Capparis data K-function estimated adjusting for inhomogeneity, K-function for
fitted Thomas process, K-function estimated assuming homogeneity, and K-function for Poisson
process.

ω are very sensitive to whether covariate effects are accounted for or not. The right plot
of Figure 2 shows estimates of the K-function for the Capparis data assuming respectively
inhomogeneity due to covariates and homogeneity. A parametric bootstrap based on sim-
ulation from the fitted inhomogeneous Thomas process shows that the difference between
the K-function estimates can not be explained by sampling variation.

We carried out model assessment using the J-function (Lieshout and Baddeley, 1996)
and visual comparison of the point patterns and simulations from the fitted models. There
is scope for improving the modelling of the Acalypha and Lonchocarpus point patterns
since, compared with these data, the fitted inhomogeneous Thomas processes produce point
patterns with too distinct clusters and too much empty space between the clusters. We also
fitted LGCPs with exponential covariance functions and in terms of the J-function and
visually, these models provide better fits for the Acalypha and Lonchocarpus data. We leave
it as a topic of further research to explore in more detail LGCPs, Neyman-Scott processes
with other types of offspring densities, or perhaps more flexible classes of cluster processes
like generalized shot-noise Cox processes (Møller and Torrisi, 2005).

5. Discussion

The two-step estimation procedure only requires specification of the intensity function and
the pair correlation function. In this paper we considered parametric pair correlation func-
tions generated by specific point process models. An interesting open problem is, given
a proposed model for the pair correlation, how to determine whether there indeed exist a
point process with this pair correlation. The evaluation of the asymptotic covariance matrix
for the pair correlation parameters moreover requires a consistent specification of the third
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and fourth order product densities.

A drawback of the minimum contrast estimation method is the need to specify r and c.
Experiments for a Thomas process show that the estimates of κ and ω are quite sensitive to
the choice of r and c. This sensitivity may partly be linked to strong negative correlation
between κ̂ and ω̂. The product κ̂ω̂ is e.g. not strongly affected by the choice of r and c.
Similarly, estimated standard errors for β̂ do not differ much when plugging in estimates of
(κ, ω) obtained with different r and c. For an LGCP, the parameter estimates appear to be
less sensitive to r and c.

Simulation studies in Guan (2006) show in concordance with Diggle (2003) that using
c = 0.25 for aggregated point patterns generally works well. Regarding the choice of r,
plots of the empirical pair correlation function (e.g. (4.21) in Møller and Waagepetersen,
2003) may be helpful. Typically, the pair correlation function converges to one and it is
not helpful to use an r beyond the point where the pair correlation function has essentially
converged to one.
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A. Proof of joint asymptotic normality of (β̂n, ψ̂n)

Below we first establish the existence of a consistent sequence {(β̂n, ψ̂n)}n≥1 such that

un(β̂n, ψ̂n) = 0 with a probability tending to one and |Wn|1/2
(

(β̂n, ψ̂n)−(β∗, ψ∗)
)

is bounded

in probability (i.e. for each ε > 0 there exists a d such that P (|Wn|1/2‖(β̂n, ψ̂n)−(β∗, ψ∗)‖ >
d) ≤ ε for n sufficiently large). Asymptotic normality then follows from Lemma 4 and
Lemma 5 in Appendix D, the boundedness of the entries in Σ̃n (Appendix B), and the
Taylor expansion

|Wn|−1/2un(β
∗, ψ∗)Σ̃−1/2

n =

|Wn|−1/2un(β̂n, ψ̂n)Σ̃
−1/2
n + |Wn|1/2

(

(β̂n, ψ̂n) − (β∗, ψ∗)
)Jn(β̃, ψ̃)

|Wn|
Σ̃−1/2
n (9)
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where

Jn(β, ψ) = − d

d(β, ψ)T
un(β, ψ) =

[

d
dβTun,1(β) d

dβTun,2(β, ψ)

0 d
dψTun,2(β, ψ)

]

=

[

Jn,11(β, ψ) Jn,12(β, ψ)
0 Jn,22(β, ψ)

]

(10)

and (β̃, ψ̃) is between (β̂n, ψ̂n) and (β∗, ψ∗).

Regarding |Wn|1/2(β̂n− β∗), we apply Theorem 2 and Remark 1 in Appendix C to un,1
with Vn = (|Wn|Σ̃n,11)1/2 and cn = |Wn|. The conditions G2-G4 hold by Lemma 3-5 in

Appendix D. It thus follows that there exists a sequence {β̂n}n≥1 where |Wn|1/2‖β̂n − β∗‖
is bounded in probability and un,1(β̂n) = 0 with a probability tending to one.

We proceed in a similar manner for |Wn|1/2(ψ̂n − ψ∗). Using a Taylor expansion,

|Wn|−1/2un,2(β̂n, ψ
∗)Σ̃

−1/2
n,22 =

|Wn|−1/2un,2(β
∗, ψ∗)Σ̃

−1/2
n,22 − |Wn|−1/2(β̂n − β∗)Jn,12(β̃, ψ

∗)Σ̃
−1/2
n,22

where ‖β̃ − β∗‖ ≤ ‖β̂n − β∗‖. Letting Vn = (|Wn|Σ̃n,22)1/2 it follows that un,2(β̂n, ψ
∗)V −1

n

is bounded in probability. Applying Theorem 2 in Appendix C to un,2(β̂n, ψ) it follows

as for un,1 that there exists a sequence {ψ̂n}n≥1 where |Wn|1/2‖ψ̂n − ψ∗‖ is bounded in

probability and un,2(β̂n, ψ̂n) = 0 with a probability tending to one.

B. The matrices Σ̃n,12 and Σ̃n,22

Note that we may rewrite ũn,2(β
∗, ψ∗) as

|Wn|
6=

∑

u,v∈X∩Wn

f(u, v)

|Wn ∩Wn,u−v|
− |Wn|2c2

∫ r

rl

Kψ∗(t)2c−1K
(1)
ψ∗ (t)dt

where

f(u, v) =
2c2

∫ r

max{rl,‖u−v‖}
Kψ∗(t)2c−2K

(1)
ψ∗ (t)dt

ρβ∗(u)ρβ∗(v)
.

Hence we can compute Σ̃n,22 = |Wn|−1
Varũn,2(β

∗, ψ∗) using the expansion (13) in Ap-

pendix D. Similarly, letting h(u) = ρ
(1)
β∗ (u)/ρβ∗(u),

Σ̃n,12 =|Wn|−1
Eun,1(β

∗)Tũn,2(β
∗, ψ∗)

=

∫

W 3
n

h(w)T
f(u, v)

|Wn ∩Wn,u−v|
[ρβ∗,3(w, u, v) − ρβ∗(w)ρβ∗,2(u, v)]dwdudv

+ 2

∫

W 2
n

h(u)T
f(u, v)

|Wn ∩Wn,u−v|
ρβ∗,2(u, v)dudv.

The boundedness of the entries in Σ̃n,12 and Σ̃n,22 follows from f(u, v) = 0 if ‖u − v‖ > r
and the basic assumptions B1-B4.
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C. A general asymptotic result

The following result is inspired by unpublished lecture notes by Professor Jens L. Jensen,
University of Aarhus. Consider a parameterized family of probability measures Pθ, θ ∈ R

p,
and a sequence of estimating functions un : R

p → R
p, n ≥ 1. The distribution of {un(θ)}n≥1

is governed by P = Pθ∗ where θ∗ denotes the ‘true’ parameter value. For a matrix A = [aij ],
‖A‖M = maxij |aij | and we let Jn(θ) = − d

dθTun(θ).

Theorem 2. Assume that there exists a sequence of invertible symmetric matrices Vn
such that

G1 ‖V −1
n ‖ → 0.

G2 There exists a l > 0 so that P (ln < l) tends to zero where

ln = inf
‖φ‖=1

φV −1
n Jn(θ

∗)V −1
n φT.

G3 For any d > 0,

sup
‖(θ−θ∗)Vn‖≤d

‖V −1
n [Jn(θ) − Jn(θ

∗)]V −1
n ‖M = γnd → 0

in probability under P .
G4 The sequence un(θ

∗)V −1
n is bounded in probability (i.e. for each ε > 0 there exists a d

so that P (‖un(θ∗)V −1
n ‖ > d) ≤ ε for n sufficiently large).

Then for each ε > 0, there exists a d > 0 such that

P (∃θ̃n : un(θ̃n) = 0 and ‖(θ̃n − θ∗)Vn‖ < d) > 1 − ε (11)

whenever n is sufficiently large.

Remark 1. Suppose that there is a sequence {cn}n≥1 and matrices In so that Jn(θ
∗)/c2n−

In tends to zero in probability. In condition G2 we can then replace V −1
n Jn(θ

∗)V −1
n by

(Vn/cn)
−1In(Vn/cn)

−1. Let θ̂n = 0 if un(θ) has no solution and otherwise the root closest

to θ∗. Then by (11), with a probability tending to one, θ̂n is a root and (θ̂n − θ∗)Vn is
bounded in probability.

Proof. The event

{∃θ̃n : un(θ̃n) = 0 and ‖(θ̃n − θ∗)Vn‖ < d}

occurs if un(θ
∗+φV −1

n )V −1
n φT < 0 for all φ with ‖φ‖ = d since this implies un(θ

∗+φV −1
n ) =

0 for some ‖φ‖ < d (Lemma 2 in Aitchison and Silvey, 1958). Hence we need to show that
there is a d such that

P ( sup
‖φ‖=d

un(θ
∗ + φV −1

n )V −1
n φT ≥ 0) ≤ ε

for sufficiently large n. To this end we write

un(θ
∗ + φV −1

n )V −1
n φT = un(θ

∗)V −1
n φT − φ

∫ 1

0

V −1
n Jn(θ(t))V −1

n dtφT
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where θ(t) = θ∗ + tφV −1
n . Then

P ( sup
‖φ‖=d

un(θ
∗ + φV −1

n )V −1
n φT ≥ 0) ≤

P ( sup
‖φ‖=d

un(θ
∗)V −1

n φT ≥ inf
‖φ‖=d

φ

∫ 1

0

V −1
n Jn(θ(t))V

−1
n dtφT) ≤

P (‖un(θ∗)V −1
n ‖ ≥ d inf

‖φ‖=1
[φV −1

n Jn(θ
∗)V −1

n φT] − dpγnd]) ≤

P (‖un(θ∗)V −1
n ‖ ≥ dln/2) + P (pγnd > ln/2).

The first term can be made arbitrarily small by picking a sufficiently large d and letting n
tend to infinity. The second term converges to zero as n tends to infinity.

D. Auxiliary results

In this appendix we collect a number of lemmas used in the previous appendices. Recall
that we always assume B1-B4.

Lemma 1. The variance

Var

6=
∑

u,v∈X∩Wn

1[‖u− v‖ ≤ t]f(u, v)

|Wn|ρβ∗(u)ρβ∗(v)
(12)

is O(|Wn|−1) for any bounded function f(u, v).

Proof. Let φ(u, v) = 1[‖u−v‖≤t]f(u,v)
|Wn|ρβ∗ (u)ρβ∗ (v) . Then by the Campbell formulae, (12) is equal

to

2

∫

W 2
n

φ(u, v)2ρ
(2)
β∗ (u, v)dudv + 4

∫

W 3
n

φ(u, v)φ(v, w)ρ
(3)
β∗ (u, v, w)dudvdw+

∫

W 4
n

φ(u, v)φ(w, z)(ρ
(4)
β∗ (u, v, w, z) − ρ

(2)
β∗ (u, v)ρ

(2)
β∗ (w, z))dudvdwdz. (13)

It then follows from straightforward calculations that each of the three terms is O(|Wn|−1).

Lemma 2. For any d ∈ R,

sup
rl≤t≤ru

|K̂d
n,β∗ −Kψ∗(t)d|

is oP (1) for any 0 < rl < ru <∞. If d ≥ 0 we may take rl = 0.

Proof. By Lemma 1, K̂n,β∗(t) tends to Kψ∗(t) in probability for each t ≥ 0. Using the

monotonicity of K̂n,β∗(t)d and Kψ∗(t)d, the result follows by arguments as in the proof of
the Glivenko-Cantelli theorem (e.g. page 266 in Van der Vaart, 1998).

Lemma 3. Assume N3. Then lim infn→∞ min{ln,11, ln,22} > 0 where

ln,11 = inf
‖φ1‖=1

φ1Σ̃
−1/2
n,11 In,11Σ̃

−1/2
n,11 φ

T

1 and ln,22 = inf
‖φ2‖=1

φ2Σ̃
−1/2
n,22 I22Σ̃

−1/2
n,22 φ

T

2 .
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Proof. For a symmetric matrix A with eigenvalues λi and a vector φ it follows from
the spectral decomposition that there exists another vector φ̃ where ‖φ‖ = ‖φ̃‖ and φAφT=
∑

i φ̃
2
iλi. This implies that that the eigenvalues of Σ̃n,11 and Σ̃n,22 are bounded by the

maximal eigenvalue λ̃n,max of Σ̃n and that λ̃n,max < λ̃max for some λ̃max < ∞ (since

the entries in Σ̃n are bounded). Hence, the eigenvalues of Σ̃−1
n,11 are greater than 1/λ̃max,

‖φ1Σ̃
−1/2
n,11 ‖2 ≥ 1/λ̃max, and ln,11 ≥ λn,11/λ̃max. Similarly, ln,22 ≥ λ22/λ̃max where λ22 is the

smallest eigenvalue of I22.

Lemma 4. Assume N1-N2 and define Jn(β, ψ) as in (10) in Appendix A.

(a) For any d > 0,

sup
(β,ψ):‖((β,ψ)−(β∗,ψ∗))|Wn|1/2‖≤d

‖Jn(β, ψ)/|Wn| − Jn(β∗, ψ∗)/|Wn|‖M

tends to zero in probability.
(b) |Wn|−1Jn(β

∗, ψ∗) − In converges to zero in probability where In is given in (7).

Proof. The result (a) follows easily by arguments involving continuity of ρβ and Kψ

and their derivatives. Regarding (b), we consider the blocks in Jn and In one at a time.

|Wn|−1Jn,11(β
∗, ψ∗) − In,11 =

1

|Wn|
∑

u∈X∩Wn

(ρ
(1)
β∗ (u))Tρ

(1)
β∗ (u)

ρβ∗(u)2
− In,11 −

1

|Wn|
∑

u∈X∩Wn

ρ
(2)
β∗ (u)

ρ∗β(u)
+

1

|Wn|

∫

Wn

ρ
(2)
β∗ (u)du.

By the Campbell formulae |Wn|−1Jn,11(β
∗, ψ∗)−In,11 has mean zero and varianceO(|Wn|−1).

Hence |Wn|−1Jn,11(β
∗, ψ∗)−In,11 tends to zero in probability. The matrix |Wn|−1Jn,12(β

∗, ψ∗)
is

−2c2
∫ r

rl

(K̂n,β∗(t)c−1 −Kψ∗(t)c−1)Kψ∗(t)c−1K
(1)
ψ∗ (t)

d

dβT
K̂n,β(t)|β=β∗dt+

−2c2
∫ r

rl

Kψ∗(t)2c−2K
(1)
ψ∗ (t)

d

dβT
K̂n,β(t)|β=β∗dt.

where the first term tends to zero in probability by Lemma 2 and Lemma 1. The last term
minus In,12 is

−2c2
∫ r

rl

Kψ∗(t)2c−2K
(1)
ψ∗ (t)[

d

dβT
K̂n,β(t)|β=β∗ −Hn,β∗(t)]dt

which tends to zero by Lemma 1. Regarding Jn,22(β
∗, ψ∗),

|Wn|−1Jn,22(β
∗, ψ∗) = In,22+

2c

∫ r

rl

(K̂n,β∗(t)c −Kψ∗(t)c)[(c− 1)Kψ∗(t)c−2(K
(1)
ψ∗ (t))TK

(1)
ψ∗ (t) +Kψ∗(t)c−1K

(2)
ψ∗ (t)]dt

where the last term converges to zero in probability by Lemma 2.
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Lemma 5. Assume N1-N5. Then |Wn|−1/2
(

un,1(β
∗), un,2(β

∗, ψ∗)
)

Σ̃
−1/2
n is asymptoti-

cally standard normal.

Proof. Note

un,2(β
∗, ψ∗) = ũn,2(β

∗, ψ∗) + Vn,2(β
∗, ψ∗)

where

Vn,2(β
∗, ψ∗) =

2c2|Wn|
∫ r

rl

(K̂n,β∗(t) −Kψ∗(t))(K̃n(t)
c−1 −Kψ∗(t)c−1)Kψ∗(t)c−1K

(1)
ψ∗ (t)dt

and |K̃n(t)−Kψ∗(t)| ≤ |K̂n,β∗(t)−Kψ∗(t)|. The term |Wn|−1/2Vn,2(β
∗, ψ∗) tends to zero in

probability since (K̃n(t)
c−1−Kψ∗(t)c−1) tends to zero uniformly in t by Lemma 2 and since

Var|Wn|1/2rK̂n,β∗(r) is O(1). Hence |Wn|−1/2un(β
∗, ψ∗)Σ̃

−1/2
n has the same weak limit as

|Wn|−1/2
(

un,1(β
∗), ũn,2(β

∗, ψ∗)
)

Σ̃
−1/2
n .

Regarding |Wn|−1/2
(

un,1(β
∗, ψ∗), ũn,2(β

∗, ψ∗)
)

, let s =
√

4r2 + ε/2 − 2r where ε =
a− 8r2 > 0, cf. N5. For (i, j) ∈ Z

2, let Aij = [is, (i+ 1)s) × [js, (j + 1)s) be the s× s box
with lower right corner at (is, js) and define

Xij =
∑

u∈X∩Aij

ρ
(1)
β (u)

ρβ(u)
−

∫

Aij

ρ
(1)
β (u)

whereby

|Wn|−1/2un,1(β) = |Wn|−1/2
∑

(i,j)∈Z2:Aij⊆Wn

Xij + oP (1).

Regarding ũn,2 we replace K̂n,β∗(t) by

1

|Wn|
∑

u∈X∩Wn

∑

v∈X

1[0 < ‖u− v‖ ≤ t]

ρβ∗(u)ρβ∗(v)

and define

Yij = 2c2
∑

u∈X∩Aij

∫ r

rl

∑

v∈X

1[0 < ‖u− v‖ ≤ t]

ρβ∗(u)ρβ∗(v)
Kψ∗(t)2c−2K

(1)
ψ∗ (t)dt

− 2c2s2
∫ r

rl

Kψ∗(t)2c−1K
(1)
ψ∗ (t)dt

whereby

|Wn|−1/2ũn,2(β
∗, ψ∗) = |Wn|−1/2

∑

(i,j)∈Z2:Aij⊆Wn

Yij + oP (1).

Let x = (x1, · · · , xp) and y = (y1, · · · , yq) be two arbitrary non-zero vectors and define

Zij = Xijx
T + Yijy

T, σ2
n = |Wn|−1

Var
∑

(i,j)∈Z2

Zij = (x, y)Σ̃n(x, y)T + o(1).
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We show below that (σn|Wn|)−1/2
∑

(i,j)∈Z2 Zij is asymptotically standard normal. This

and N3 implies that |Wn|−1/2
∑

(i,j)∈Z2 Zij is asymptotically N(0, (x, y)Σ̃(x, y)T). The

asymptotic normality of |Wn|−1/2
(

un,1(β
∗), ũn,2(β

∗, ψ∗)
)

Σ̃
−1/2
n then follows by the Cramér-

Wold device and N3.
Let |Λ| denote cardinality of a subset Λ ⊆ Z

2 and F(Z,Λ) the σ-algebra generated by
{Zij : (i, j) ∈ Λ}. Define the mixing coefficient

αp1,p2(m;Z) = sup{|P (A1 ∩A2) − P (A1)P (A2)| : Ai ∈ F(Z,Λi), |Λi| ≤ pi,

Λi ⊆ Z2, i = 1, 2, d(Λ1,Λ2) ≥ m}.

Since the random field Z = {Zij : (i, j) ∈ Z
2} inherits the mixing properties of X we can

now invoke the central limit Theorem 3.3.1 in Guyon (1991) which is an extension to the
nonstationary case of Bolthausen (1982)’s central limit theorem. Specifically, we need for
some δ > 0,

(a) lim infn→∞ σ2
n > 0,

(b) supij E(|Zij |2+δ) <∞,

(c)
∑

m≥1mα2,∞(m;Z)δ/(2+δ) <∞.

These conditions hold due to N3, N4, and N5, respectively. Note in particular regarding
the last condition that Yij and hence Zij only depends on X through X ∩ Aij ⊕ r where
Aij ⊕ r = [is− r, i(s+ 1) + r) × [js− r, j(s+ 1) + r) whose area equals a/2.

E. A sufficient condition for mixing for Neyman-Scott proces ses

Recall the definition in Section 2 of a Neyman-Scott process X = ∪c∈CXc where the Xc

are independent offspring Poisson processes with intensity functions αk(· − c) and k is the
dispersal density for the offspring. Below we verify that a sufficient condition for mixing is
that

sup
ω∈[−m/2,m/2]2

∫

R2\[−m,m]2
k(v − w)dv is O(m−d−2). (14)

Consider for a given h > 0 regions E1 = [−h, h]2, and E2 = R
2 \ [−m,m]2 where

m = 2n > h. Let X1 = ∪c∈C∩[−n,n]2Xc and X2 = X\X1. Then X1 and X2 are independent
cluster processes. Let Ai = {X ∩ Ei ∈ Gi}, i = 1, 2, where G1 and G2 are sets of point
configurations. Further let B1 = {X1 ∩ E2 = ∅}, B2 = {X2 ∩ E1 = ∅} and B = B1 ∩ B2.
Then

P (A1 ∩A2) = P (A1 ∩A2 ∩B) + P (A1 ∩A2 ∩Bc)
where

P (A1 ∩A2 ∩B) = P (X1 ∩E1 ∈ G1, X1 ∩ E2 = ∅)P (X2 ∩ E2 ∈ G2, X2 ∩ E1 = ∅).

Similarly,

P (A1)P (A2)

= P (X1 ∩ E1 ∈ G1, X1 ∩ E2 = ∅)P (X2 ∩ E2 ∈ G2, X2 ∩ E1 = ∅)P (B)

+ P (A1 ∩B)P (A2 ∩Bc) + P (A1 ∩Bc)P (A2 ∩B) + P (A1 ∩Bc)P (A2 ∩Bc).
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Thus,

|P (A1 ∩A2) − P (A1)P (A2)| ≤ 5P (Bc) ≤ 5P (Bc1) + 5P (Bc2)

Let n(X1 ∩ E2) denote the cardinality of X1 ∩ E2. Then

P (Bc1) ≤ En(X1 ∩ E2) = ακ

∫

[−n,n]2

∫

R2\[−m,m]2
k(u− c)dudc

and

P (Bc2) ≤ En(X2 ∩ E1) = ακ

∫

[−h,h]2

∫

R2\[−n,n]2
k(u− c)dcdu.

Both of these are O(m−d) if (14) holds.
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