A tutorial on Reversible Jump MCMC with a view
toward applications in QTL-mapping

Rasmus Waagepetersen* Daniel Sorensen’

Abstract

A tutorial derivation of the reversible jump Markov chain Monte Carlo (MCMC)
algorithm is given. Various examples illustrate how reversible jump MCMC is a
general framework for Metropolis-Hastings algorithms where the proposal and the
target distribution may have densities on spaces of varying dimension. It is finally
discussed how reversible jump MCMC can be applied in genetics to compute the
posterior distribution of the number, locations, effects, and genotypes of putative
quantitative trait loci.
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1 Introduction

Markov chain Monte Carlo (MCMC) has become a very important computational tool in
Bayesian statistics, since it allows for Monte Carlo approximation of complex posterior dis-
tributions where analytical or numerical integration techniques are not applicable. MCMC
has also been applied, to a lesser degree, for Monte Carlo approximation of likelihoods;
see Geyer and Thompson (1992). The well-known Metropolis (Metropolis et al., 1953)
and Metropolis-Hastings (Hastings, 1970) MCMC algorithms were introduced for simula-
tion of target distributions on a space of fixed dimension as e.g. n dimensional Euclidean
space. The reversible jump MCMC algorithm introduced in Green (1995), allows simu-
lation from target distributions on spaces of varying dimension. Reversible jump MCMC
can also be considered as a general framework for Metropolis-Hastings algorithms, where
the proposal distribution and the target distribution have densities on spaces of different
dimension. Both simultaneous and single-site updating Metropolis-Hastings algorithms are
in fact special cases of reversible jump MCMC.
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The purpose of this work is to present a simple, self-contained derivation of the re-
versible jump MCMC algorithm, using a minimum of measure theory. Our intention is to
make the topic accessible to biometrical geneticists, quantitative biologists in general, and
applied statisticians, following the tutorial style in Casella and George (1992) and Chib
and Greenberg (1995). The paper is organized as follows. In section 2, a few examples
motivate and illustrate possible applications of reversible jump MCMC. In section 3, a
short review of reversible Markov chain Monte Carlo algorithms is given. Section 4 focuses
on reversible jump MCMC, and finally, section 5 contains an example of how reversible
jump MCMC might be used in genetics for Bayesian mapping of quantitative trait loci

(QTL).

2 Statistical models with varying dimensions

Different models with parameter spaces of varying dimensionality may be postulated for the
analysis of a particular data set. A natural approach to take model uncertainty into account
in the Bayesian framework, is to assign a prior distribution over the collection of competing
models. The posterior distribution over the collection of models and the unknown model
parameters cannot be handled within the usual Metropolis-Hastings framework and calls
for application of the reversible jump MCMC methodology. We give here a few examples
of the huge number of situations where reversible jump computation has been applied:

Example 2.1 Miztures with unknown number of components.

Suppose that fi(-;61),..., fx(-;0k) are densities and that data are assumed to be gen-
erated from the mixture density f = Zle 0; f;. Apart from the mixture weigths §; and the
parameters 6;, 2 = 1,..., k, one may also be interested in inference concerning the number
k of densities appearing in the mixture. Richardson and Green (1997) apply reversible
jump MCMC to carry out Bayesian inference for mixture models with unknown number
of mixture components.

Example 2.2 Nonparametric Bayesian smoothing.

Suppose that f is a smooth function on an interval [a,b] C R and that data Y; =
f(z;)+€,1=1,...,n, are observed, where the z;’s are fixed locations in [a, b] and the ¢;’s
are 7id zero-mean normal variables. A nonparametric estimate of f may be obtained by
fitting a step-function to the observations. In a Bayesian approach one may introduce priors
for the unknown number N of locations for the jumps of the step-function, the locations
Xi,...,Xy of the jumps, and the heights H,,..., Hy of each step, and reversible jump
MCMC can be used to sample the posterior distribution over the space of step-functions
with varying number of steps. The posterior mean typically has a smooth appearance
and can be used as an estimate of f. The variable dimension Bayesian approach to curve
fitting was first proposed in Arjas and Gasbarra (1994). A related approach is considered
in Denison et al. (1998).



Example 2.3 Linear regression with varying number of covariates.

One may here envisage a number of competing regression models with different number
of covariates. In the QTL (Quantitative Trait Loci)-mapping example at the end of this
paper, the data are assumed to follow a linear normal model where the dimension of the
design matrix depends on the unknown number of QTLs.

Example 2.4 Finite point processes.

A finite point process on a bounded subset D C R?, is a finite set { X1, ..., Xy} of points
X, randomly distributed in D. If the number N of points is random one may need to apply
a reversible jump MCMC algorithm in order to simulate the point process. The MCMC
algorithm introduced in Geyer and Mgller (1994) for simulation of finite point processes is
a special case of the reversible jump algorithm. In many situations where reversible jump
MCMC is applied to Bayesian inference, the priors and posteriors may on the other hand
naturally be regarded as finite point processes. In example 2.2, for instance, the random set
of jump locations is a finite point process on [a, b], and the set {(Xy, H1),..., (Xn, Hn)}
of jump locations together with the associated step heights constitute a so-called marked
point process with marks given by the step heights. A similar remark holds for the QTL
example in section 5.

3 Reversible Markov chain Monte Carlo

3.1 Prerequisites
3.1.1 Notation

Suppose that Z = (Zi,....Z,) is a real random vector of dimension d > 1. We shall say
that Z has the density f on R? if the probability that Z belongs to a subset A of R? is
given by the d-fold integral

P(ZEA):/_Z/_Z---/_Zl((zl,...,zd)EA)f(zl,...,zd)dzl---dzd

where the indicator function 1((21,...,24) € A) is one if (zy,...,24) is in A, and zero
otherwise. If e.g. A = [aq,b1] X [ag, by] is a two-dimensional rectangle then the integral is:

[ [16 €t nvemmieoway= [ [ s paay
a1 Ja
Integrals will usually be written in abbreviated form:
P(Z € A) = /1(z € A)f(2)dz = /Af(z)dz
whenever the dimension of the integral is clear from the context.
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3.1.2 Conditional distributions

We shall further need the notion of a conditional distribution. Suppose that X and Y
are stochastic vectors in R? and R?, respectively, and that X has the density f on RP. In
general a function 0 < P(+,-) < 1 which takes as its first argument elements in R? and as
its second argument subsets of R? is said to be a conditional distribution of ¥ given X
when the identity
HXEAYEB%i/HLmﬂ@M (1)
A
holds for all subsets A C RP and B C R.
If (X,Y) has a joint density A on RP*Y then the conditional distribution of Y given
X = x is given by the familiar expression

m%mzpwemxzwz/ﬁ@@@

B

where B C R? and h(y|z) = h(z,y)/f(z) is the conditional density on R? for Y. The

identity (1) is then just the well-known identity P(X € A,Y € B) = [, [, h(y|z)f(z)dydz.
Later on, in section 3.3 and section 4, we shall consider situations where, conditionally

on X =z, Y is given by Y = g(z,U) where g is a deterministic mapping and U is a

stochastic variable with a density ¢(z,-) on RY (¢’ < ¢). Then P(z, B) is given by

P(z,B) = /1(g(a:,u) € B)q(x,u)du.

That is, conditionally on X = z, Y does not have a density on R? but on a space of lower
dimension. In this case we cannot write the joint probability P(X € A,Y € B) in terms
of a joint density on RP? but need to refer to the equation (1).

3.2 A short review of MCMC

In the following it is assumed that Z has density 7 on R?, where 7 has a complex form, so
that expectations with respect to m cannot be evaluated analytically or by using standard
techniques for numerical integration. In particular, 7 may only be known up to an unknown
normalizing constant. Direct simulation of 7 may be difficult, but usually it is quite easy
to construct a Markov chain whose invariant (or stationary) distribution is given by 7.
The Markov chain X, X5, X3,... is specified in terms of the distribution for the initial
state X; and the transition kernel P(-,-) which specifies the conditional distribution of
X,41 given the previous state X;. That is, if the value of the current state is X; = x, then
the probability that X;,; is in a set A C R is given by

P(.Z‘,A) = P(Xi+1 € A|Xz = :c)

Under the conditions of irreducibility and aperiodicity, the generated Markov chain be-
comes ergodic and can be used for Monte Carlo estimation of various expectations E(h(Z))
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with respect to the invariant density 7. That is, for almost all initial values of X; and any
function h on R? with finite expectation E(h(Z7)),

E(h(Z)) = / h(2)n(2)dz = Tm =S h(X,). )

N—oo N -
1=

Thus, E(h(Z)) can be approximated by the sample average 31" | h(X;)/N for some large
N. Here, h could for instance be the indicator function of a set A C R¢, so that E(h(Z))
equals the probability P(Z € A) = E(1(Z € A)). For details on convergence of MCMC
estimates we refer the reader to e.g. Chib and Greenberg (1995) or Besag et al. (1995).

The distribution 7 is invariant for the Markov chain (X;);>1 if the transition kernel
P(-,-) of the Markov chain preserves =, i.e. if X; ~ 7 implies X;,1 ~ m, or, in terms of
P(-,-) and =, if

/ P(z, B)r(z)dz = /B — (3)

for any subset B C R%. Imposing the stronger condition of reversibility with respect to ,
is sufficient to guarantee that = is invariant for the Markov chain. This condition holds
if (X;, X;41) has the same distribution as the time-reversed subchain (X;1, X;) whenever
Xi ~ T, ie. if

P((X;, Xi11) € AX B) = /AP(x,B)ﬂ(x)da: =

/ P, A)r(z)dz = P((Xs, Xsu1) € B x A) (4)

for subsets A, B C R%. Reversibility (4) implies (3) by taking A = R? (since P(z,R?) = 1).

To verify that a non-reversible chain has the correct invariant distribution is in general
a difficult task, since this involves integration in (3) with respect to 7, and difficulties
with this was the reason for using MCMC in the first place. However, the Metropolis-
Hastings algorithm, or more generally reversible jump MCMC, offers a practical recipe for
constructing a reversible Markov chain with a given invariant distribution.

3.3 Simultaneous and single-site updating Metropolis-Hastings
algorithms

One motivation for reversible jump MCMC is the requirement for simulation of posterior
distributions on spaces of varying dimension. Reversible jump may be seen also as a general
framework for Metropolis-Hastings algorithms with degenerate proposal distributions, i.e.
proposal distributions which do not have a density on the space where the target density
is defined. To illustrate this, a comparison is made between the well-known simultaneous
and single-site updating Metropolis-Hastings algorithms.

In the following, X, denotes the current n’th state of a Metropolis-Hastings chain
X4, Xy, ... for some n > 1, and Y,,;; denotes the proposal for the next state of the chain.
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The proposal Y,,;; is either accepted with a certain acceptance probability which depends
on the values of X, and Y, 1, or it is rejected, in which case the next state X, ; of the
Metropolis-Hastings chain is equal to X,,. We return to the acceptance probability in
section 4.4.

For a joint updating Metropolis-Hastings algorithm in equilibrium, the random vector
(Xn, Yny1) consisting of the current Markov chain state and the proposal, has joint density
g on R??, given by

9(z,y) = gz, y)m(x)

where 7 is the d-dimensional target density, and ¢(z, -) is the d-dimensional proposal density
of Y,.1, given that X has the value x € R?. The probability that Y, belongs in a set
A C R? given that X, = z, is thus given by the following integral on R?:

Qe A) = P(Vysr € A|X, = 2) = / 1y € A)g(z,y)dy. (5)

The situation is different for a single-site updating Metropolis-Hastings algorithm for
which only one component of the current state X, is updated at a time. Suppose that
Y, 11 is obtained by updating the 7’th component of X,, = x. Then, Y1 equals = except
at the ¢’th component, where z; is replaced by a random variable U generated from a
one-dimensional proposal density ¢;(z,-). Since

Yn+1 cAs (1‘1,...,xi_l,U,$i+1,...,$d) € A,

the probability that Y,,; belongs in A C R?, given that X, = z, is given by the one-
dimensional integral:

Q(z, A) = P(Yy 1 € A|X, = z) = / V(@1 Tt Ties s 7a) € A) i (1, 0) du. (6)

Due to the different forms of expressions (5) and (6) for the proposal probabilities
Q(z, A), simultaneous and single-site algorithms are usually treated separately in the lit-
erature. Both the joint and the single-site updating Metropolis-Hastings algorithms are,
however, special cases of the reversible jump algorithm, which we turn to in the next
section.

4 Reversible jump MCMC

In Green (1995), the reversible jump algorithm is defined in a very general setting, and it
is not immediately clear how to apply the methodology in a specific situation. Here we
give a detailed derivation of the algorithm in a framework which covers many situations of
interest as e.g. example 2.1 and example 2.2 and where the notation is still manageable.
The approach should hopefully enable the reader to handle also situations not covered by
the chosen framework (see e.g. section 5.1).



4.1 The invariant distribution on continuous spaces of varying
dimension

In the following, 7 is the joint probability distribution of (M, Z), where M € {1,2,3,...,1}
is a “model indicator” and Z is a real stochastic vector of possibly varying dimension (/
either represents a finite integer or co). The vector Z takes values in the set C defined as
the union C' = U! _,C,, of spaces Cy, = R*, n,, > 1. Given M = m, Z can only take
values in C,,, so that 7 is specified by p,, = P (M = m) and densities f (-|M = m) on Cy,,
m = 1,2,... for the distribution of Z given M = m. Thus, for A,, C Cy,:

P(M:m,ZeAm):P(M:m)P(ZEAm\M:m):pm/ f(z|M =m)dx.
Am

The density f (-|M = m) is denoted f,, hereinafter.

If one contemplates a number of competing models, where the number of parameters
may vary across models, then p,, may represent the posterior probability of model m, and
given M = m, f,, is the posterior density of the n,,-dimensional vector Z of parameters
associated with model m. In this case p,, fin(z) = ¢ 'ph(z|m)g(y|m, z) where p,, is the
prior probability of model m, h(z|m) is the prior density of z given M = m, g(y|m, z) is
the likelihood of the data y given (M, Z) = (m, z), and c is the overall (typically unknown)
normalizing constant ¢ = 1 _ fm Je. 9(ylm, 2)h(z|m)dz.

4.2 Specification of the algorithm

We now construct a reversible Markov chain (X;),,, with invariant distribution 7 in a man-
ner similar to the Metropolis-Hastings algorithm. Each state X; contains two components,
ie. X; = (M, Z;), where M; is the model indicator, and Z; is a stochastic vector in Cyy,.
Suppose that (m, z) is the value of the current state X,, of the Markov chain. A proposal
Vo1 = (Y24, YP), is generated as follows for the new state X, 1 of the Markov chain,
where the superscripts ind and par are labels for the proposals of the model indicator M, ,
and of the vector Z,, 1, respectively. With probability p,m (Zin,zl Pmm = 1), the proposal
Ynq for the new model indicator is set equal to m’, and given Y%} = m’, the proposal
Y>" is generated in Cy,. It may be useful to generate Y} by applying a deterministic

n

mapping to the previous value z and to a random component U. A general formulation for
this mechanism is to express Y17 as Y271 = Gimm (2, U), where U is a random vector on
R™"mm’ | Ny > 1, which has density gmm (2,) on R’ and gy : R mm! — Rm!
is a deterministic mapping. The proposal Y, is finally accepted with an acceptance
probability amm (2, Y, r1) to be derived in section 4.4.

When considering a move from a state (m, z) to (m/,2') = (m/, g1mm (2,u)), and the
reverse move from (m/, 2') to (m, z) = (M, gim(2', u')), the vectors of Markov chain states
and proposal random variables (z,u) and (2’,u'), must be of equal dimension. That is, the

crucial dimension matching condition
Ny + Ny = N + N/ (7)
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needs to be fulfilled. This condition ensures that f,,(2)gmm (z,u) and fu (2")@mm (2, u')
are joint densities on spaces of equal dimension.

It will further be assumed that there exist functions go,y, : R'm t"mm’ — R"'m and
Gomim - Rm/ TPm/m — Rmm’  such that the mapping g, given by

(Z,a ul) = Gmm (2,4) = (Grmm (2, %) , G2mme (2, 10)) (8)

is one-to-one with
(2,8) = G (25 0) = G (27, 0') = (Growm (2, 0') , Qo (2, 0,)) 9)
and that g,,,, is differentiable.

Example 4.1 Simultaneous and single-site updating random walk Metropolis.

Let f be a density on R, and let ] = 1, C; = R*, py =1, f1 = f, and pi; = 1
in the reversible jump framework. The simultaneous updating random walk Metropolis
algorithm for simulation of f is then obtained with g¢11(z,U) = ¢(2,U) = (2 + U,-U)
where U is generated from a density ¢(-) on R?. The transition kernel for updating of the
7’th component in a single-site updating random walk Metropolis algorithm is obtained
with ¢11(2,U) = (21, .-+, 2i1,2+ U, 2341, - - -, 24, —U) where U is generated from a density
on R.

Example 4.2 Jumps between two models of equal dimension.

A simple example with two models of equal dimension is as follows. Let I =2, C; =
R, xRy and C;, = R x R, , where R, denotes the positive real numbers. Further, let
file, Bly) < g1(y|ey, B)hi(c, B), where g; is a gamma density and h; is a prior for the
gamma density parameters o and 3. Also, let fo(u, o%|y) o< go(y|p, 0%)ha(p, 0%), where go
is a log normal density and hs is a prior for the log normal density parameters p and o2.
Suppose that the current state of the Markov chain is (1, «, 8), and that a move is to be
made to the log normal model, i.e. to a state (2, u,0?). One way to propose values for the
parameters u and o2 might be to equate the first and second order moments under the
current gamma model and the proposed log normal model, and subsequently add/multiply
some noise. More precisely, solve exp(ii + 62/2) = aff and exp(2/i + 262) = fa(a+ 1)
with respect to i and 2, and let the proposals be = ji + U and 02 = 52V where U and
V' are generated from ¢;5. One thereby obtains

gia(0, B,U,V) = (10g(a/v/T+ 1/a) + U log(1 + 1/a)V, U, V)
and

g1(p, 0%, U, V') = (1/(exp(c?/V") = 1), exp(p — U' + 0*/(2V")) (exp(o?/V") — 1), U", V).



4.3 Reversibility

Assuming X, = (M, Z,) ~ 7, the condition of reversibility is

P(M, =m, Zy € Ap, Myps1 =m', Zns1 € Byy) =
P(M, =m', Zy € By, Myps1 =m, Zns1 € An) (10)

for all m,m' € {1,...,I}, and all subsets A,, and B, of C,,, and C,,, respectively. In
analogy with (1), the left hand side of (10) is

P(Mn =m, Zy € A, Mn—l—l = m, Zn—|—1 € Bm’) =
pm/ fm n—|—1 m,; Zn—|—1 S Bm'|Xn - (m, Z)) dz
Let
Q% (2, Brr) = P (V24 = m/, Y ¥ € B,y and Y,y is accepted|X,, = (m, 2))
be the joint probability of generating a proposal Y, 41 with Y, *4 = m/ and ¥>*] in B, and

accepting the proposal, given that the current state of the Markov chain is X, = (m, 2).
Let further

$m (2) = P (Yy41 is rejected| X, = (m z)) =
Z Pmm! /qmm’ Z, U') [1 — Qmm/! (zaglmm’ (Z: U))] du
be the probability of rejecting the proposal. Then

P(My1=m',Zy11 € By | X, = (m,2)) = Qb (2, Bi) + 8m (2) 1L (m =m', 2z € By).
The left hand side of (10) therefore equals
Pm Jm (2) Qo (2, Bpr) dz + Di, fm (2)sm (z)1(m=m',z € Byy)dz =
Am
/ P Sfm (2) Qpgnr (25 Byy) dz + /pmfm (2)$m (2)1(m=m',z € A, N Byy)dz (11)

m

where

/ pmfm (Z) anml (Z, Bm’) dz =
Am

P (Mn =m, Z, € A, Y,iidl =m/, Y] € By and Yy, 44 is accepted) )



By symmetry the right hand side of (10) equals
/ Pt fr (2) Qi (25 A d2' + /pm/ fo (2') s ()1 (m =m', 2 € B,y N A,) d2'.
B
(12)
The second terms in (11) and (12) are equal both in the case when m # m' (in which
case they are zero, because the indicator function takes the value zero), and when m = m/

(in which case the move is within the same model, and both expressions are identical).
Therefore a sufficient condition for (10) to hold is, for all m and m':

ml

/A pmfm (Z) Q(Tlnm’ (Za Bm’) dz = / pm’fm’ (Z,) Q;ln’m (Zla Am) dz'. (13)

B,

ml

4.4 Derivation of the acceptance probability

Equation (13) is now written more explicitly. Since (a) Y;,41 is generated in C,,y with prob-
ability pmm, (b) Yoi1 € By < Grmm (2,U) € By, (¢) Y41 is accepted with probability
e (2, Grmmy (2,U)), and (d) U ~ @y (2, .), it follows that

?nm’ (Z, Bm’) = Pmm/ / 1 (glmm’ (Z, ’U,) S Bm’) Amm/! (Za Jimm/’ (Za U')) 9mm/ (Z, u) du (14)

and the left hand side of (13) is thus

/ pmfm (Z) Q?nm’ (Z, Bm/) dz =
Am

//1 (Z S Ama gimm! (Z7 U) S Bm’)pmfm (Z) Pmm! Omm! (Za J1mm/ (za U)) Gmm/ (Za ’U,) dzdu.
(15)
Similarly, the right hand side of (13) is

/ pm'fm' (Z’) '(rln’m (Z,, Am) dz' =
B

ml

// 1 (zl € By, 9imim (zla Ul) € Am) Pt frnr (Z,) PrvmOm'm (zla Jim'm (zla UI)) Am'm (zla ul) dz'du.
(16)

Due to the dimension matching assumption (7) and the relationships (8) and (9) involving
gmm Which is assumed to be differentiable, a straightforward change of variable in (16)
yields:

//1 (glmm’ (z,u) € Bm’az € Am)pm’fm’ (glmm’ (Z,U))pm'm

Gm!m (glmm’ (Za U’) 3 Z) dm'm (glmm’ (Z: u) y §ommv (Za U’)) |g;nm’ (Z: u)|dzdu (17)
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where dz'du’ = |g!....(2,u)|dzdu and

! 6gmm’ (Z, u) 391 mm! (24) 899,01 (2,u)
= - = oz 82

Imm! (Z, u) - 920U - 091 mm! (28) 099 (2,0)
ou ou

Examination of (15) and of (17) shows that the reversibility condition (13) is satisfied if

pmfm (Z) P Q! (Z, U') Gmm/! (Za J1mm’ (Z, U)) =
OGmm (2, 1)
020u )

Dy fm’ (glmm’ (Z: U)) PrvmAm!'m (glmm’ (Z, U’) y Jomm/ (Z, u)) Gm!m (glmm’ (Z, U’) ’ Z)

(18)
Choosing the acceptance probability as large as possible subject to the detailed balance
condition (18), as suggested by Peskun (1973), yields:
Py fm’ (zl)pm’mqm’m (Zla U'I) agmm’ (Z, U)
(19)
pmfm (Z) Prmm! Qmm/ (Z, U 0z0u

whenever pp, fon (2) Pmm Gmme (2, u) > 0 and where (2, u') = gmm (2, u). In practice,
Pmfm (2) Do Qe (2, w) = 0 only happens if the Markov chain is initialized in a state
(m, z) for which pp, fm (2) = 0.

Remark 4.1 The Jacobian.

Umme (2, 2') = min (1,

Note that the Jacobian in (19) appears due to the deterministic transformation used
in the proposal mechanism, and the change of variable used when equating (15) and (16).
The Jacobian is therefore not really an inherent component of dimension changing MCMC,;
in many situations with varying dimension it actually equals one (see e.g. section 5). In the
fixed dimension example 4.2 the Jacobian on the other hand equals |0g12/0a0f0udv| =
v(Ba(a+ 1))~ which differs from one.

Remark 4.2 Deterministic proposals.

Sometimes it may be useful to apply deterministic proposals for a move from C,, to
Chy, i-e. tolet Y11 = Grmme (2), and still use a stochastic proposal for the move in the other
direction. In this case n,,,  equals zero and the dimension-matching condition becomes
Ny = Ny + Nyrm- A function gopy @ RP™ — R™/m is thus required, such that the inverse
of Gmm' = (Grmm’s 92mmy) 1S given by gumm = g1mm- In other words, equations (8) and (9)
become

(Zla ul) = gmm’(z) = (glmm’(z)a 9omm/ (Z)) and z = g;zin’ (zl’ ul) = glm’m(zla UI)-
Equation (14) becomes
Q?nm’ (Za Bm’) = pmm’1 (glmm' (Z) € Bm’) Q! (Z: J1mm/ (Z)) 5 (20)
and calculations similar to those leading to (19) yield the acceptance probability

).

agmm’ (Z)
0z

Py fm’ (ZI) Povmm/m (Z,: ’LL,)
pm.fm (Z) Py

Gy (2,2') = min (1,

11



5 Bayesian mapping of QTL

Geneticists are often interested in locating regions in the chromosome contributing to
phenotypic variation of a quantitative trait. These chromosomal regions are known as
quantitative trait loci (QTL), and their location and effects on the quantitative trait can
be investigated using genetic markers. The latter are chromosomal regions of known loca-
tion in the chromosome, which show detectable DNA variation among individuals in the
population, and which do not have a physiological causal association to the trait under
study. By studying the joint pattern of inheritance of the markers and the trait, inferences
can be made about the number, location and effects of the QTLs affecting the trait. A
Bayesian approach combined with reversible jump MCMC is well suited for QTL studies,
and applications can be found in Satagopan and Yandell (1996), Heath (1997), Uimari
and Hoeschele (1997), Stephens and Fisch (1998), and Sillanpdd and Arjas (1998). Here
we consider a simple experimental design in order to illustrate the use of reversible jump
MCMC in QTL-mapping.

Assume that K > 1 linked flanking markers and phenotypic observations y;,7 =
1,...,nes are available from a backcross population of ng,s individuals. For simplicity,
it is assumed that full marker information is available for all individuals. These individu-
als were generated by mating the offspring from the cross between two completely inbred
lines, back to parents taken from one of the two inbred lines. In this backcross design,
at any one locus or gene location, the genotypic distribution comprises only two possible
types. The marker genotype information for the K marker loci for each of the ngs in-
dividuals is denoted M = {My},, = . , and D = {Dl}{il denotes the known
positions of the K markers. Suppose that m QTLs are present at locations Aq,..., A\,
where D; < \; < Dk, and let 0;; € {0,1} denote the genotype of the ¢’th individual for the
QTL at location A;. More than one QTL may be present in the region defined by two flank-
ing markers. Let () be the matrix whose j’th column is 0; = (01}, ..., 0n,,;)", the vector
of QTL-genotypes at the location \; for all nops individuals. The data y = (y1, ..., Yny,) "
is assumed to be a realized value from Y, where

Y‘m7 )\17'"7)\m7517"'7ﬁm7Q:,u'70-2 ~ N((,U,,...,,LL)T+Q(ﬁ1,.--,ﬁm)T,U2I) . (2]—)

In (21), B4, ..., Bm are real parameters describing the effects of each QTL, p is an intercept,
and o? > 0 is a residual variance which may include a polygenic contribution from other
loci affecting the trait. For ease of presentation it is assumed that y and o2 are known.
The Bayesian model requires the specification of a prior distribution for the model pa-
rameters. Given M = m, the locations A,..., A, are assumed to be independent and
uniformly distributed in the interval D =|D;, Dg]. For the unknown number M of QTLs
a Poisson distribution is assigned, with mean a(Dg — D;), so that a > 0 is the a pri-
ori expected number of QTLs in an interval of unit length. Given the QTL-locations
A = (A1,...,Ap), the probability of a genotype configuration o = (0i)i=1,...ngpe, j=1,..m €
{0, 1}™ebs™ is p(o|\, M, m). Here we shall not be concerned with the explicit expression
for p(o|A, M, m), but refer the interested reader to e.g. Sillanpéd and Arjas (1998). The
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QTL effect parameters i, ..., 8,, have a priori independent, zero-mean, normal distribu-
tions with variance o3. Given M = m, the parameters (\,0) and 8 = (f4,...,[8y) are
independent, a priori.

The joint posterior is of the form:

f(A7 ﬁ’ 07 m‘y) q f(y|A’ /87 07 m)f(A’ﬁ7 O’m)
= f(ylB,o,m; p,a%)p(o|A,m, M) f (Alm; D)h(B|m; o§)p(m; ). (22)

5.1 Reversible jump MCMC for QTL-mapping

In this section it is shown how a reversible jump algorithm for simulation of the joint
posterior (22) may be constructed. The posterior does not fall into the framework of
section 4 due to the discrete QTL genotype parameters and we therefore briefly explain
how the reversible jump algorithm is derived for the current model, in analogy with the
derivation in section 4. Attention is restricted to dimension changing moves which either
increase or decrease the number of QTLs. Suppose that the current state of the Markov
chain has m QTLs. With probability pm,m-1 = 1/2 it is proposed to decrease the number
of QTLs by one, and with probability pm, m+1 = 1/2 it is proposed to increase the number
of QTLs by one (the chain remains at the current state if m = 0 and it is proposed to
decrease the number of QTLs).

To economise on notation in the following, the state of the Markov chain is represented
as (m,z), where z = (21,...,2n) is a vector of QTL-configurations z; = (\;, 8;,0,), j =
1,...,m. Thus, each QTL-configuration z; consists of the QTL location together with
the associated QTL effect and genotypes. A QTL configuration then belongs in the space
Ceont = D X R x {0, 1}™bs_ and the vector z of m QTL configurations belongs in the space
Cn=0C"

conf-

5.1.1 Removal of a QTL

Suppose that there are m > 1 QTL configurations in the current state X, = (m, z) of the
Markov chain. A move which reduces the number of QTLs may be accomplished by simply
deterministically removing the last QTL-configuration in z, that is, letting the proposal

for the QTL-parameters be Y| = (21,...,2%p-1). Suppose that A,, is a subset of C7
and that B,,_; is a subset of gﬁ;ﬁ. Since the proposal is generated deterministically, the
probability P(Y;"4 = m — 1,V"] € By,_1 and Y, 11 accepted| X, = (m, z)) is in analogy

with (20),

1
mm—1(2 Bm1) = 51((21, ooy Zm=1) € Bm_1)@mm-1(%, (21, - Zm-1)) (23)
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and the joint probability P(M,, = m, Z, € A, Y, = m—1,YPH € B, 1 and Y, 11 accepted)

/m/‘ Yo femly)l(z € An)QE o1 (2, Buo1)dAdB =

E{O l}nobs
/ / Z f(z,m|y)1(z6 Am;(zla"-:zm—l) EBm—l)
m m 0€{0,1}™obs™
Amm—1(2, (21, .., Zm—1))dAdS (24)
where dAdp is short for dA; ---dA\,dfy - - -dB,, and 2z = (A1, £1,01), -+, (Amy Bms Om))-

5.1.2 Addition of a QTL

Suppose now, conversely, that the current state is (m — 1,2') = (m — 1, 21,...,2,_1) and
that the number of QTLs is to be increased by one. Then, the position A,, of the new
QTL is sampled uniformly between D; and Dg. The genotypes o,, for the new QTL are
sampled from the conditional probability p(o,|X, o', A, M, m) of the QTL genotypes at
location \,,, given the existing QTL locations X, the existing genotypes o, and the new
location \,. The new regression parameter 3, is finally sampled from N(0,72%), 72 > 0.
The proposal for the QTL parameters is then z = (21, ..., Zm 1, (Am, Bm, 0m))- In analogy
with (14), the probability P(Y;34 = m, Y] € A, and Y,,;1 accepted|X,, = (m —1,2')) is

a
mlm

/ / 1((#', (s Brns 0m)) € Am)m1m(Z' (' Ay Brns 0m))

Oom E{O l}nobs
dm—1,m (Z,: (/\ma ﬁm: Om)) d/\mdﬁm (25)

where
1
qm—l,m (Zla ()\ma Bma Om)) = f(ﬁma 7—2) T p(om‘)‘la Ola )‘ma Ma m)
Dyg — Dy
and analogously to (15), P(M,, = m—1,Z, € B, 1,Y,% =m, Y] € A, and Y, 11 accepted)

/ / F(m = 1)1 € Buot) Qs (2 An)dNdS  (26)

’E{O 1}"obs(m 1)

where d\'df' is short for dA; -« - d\y_1dfy -+ - - dBm-1 and 2’ = ((\1, B1,01), - -,
(AMm—1, Bm—1,0m—1)). Substituting (25) in (26) yields:

/Dm/ Z f(2',m— 1|y)£(fnz D) (0m| N, 0’y Ay Mym)

0'€{0,1}obs™

(2" € Bin-1, (', (Am; Bras 0m)) € Am)am—1,m(Z, (2, (Am, Brn, 0m))) AN dB' AN d . (27)
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5.1.3 The acceptance probability

Note that the dimensions of the integrals and sums in (24) and (27) match. As in section 4,
the acceptance probability is derived by equating (24) and (27). The situation is here
particularly simple, since we do not need a change of variable. To make the connection
to section 4 more clear we could as in Remark 4.2 express the removal-proposal as 2z’ =
Gimm—1(21, ..., 2m) and the addition-proposal as z = Gim—1,m(21, - - -, 2Zm=1, (Am, Bm, 0m))-
The functions gp, m—1 and gm—1,, are then the identity mappings and the Jacobian arising
from a formal change of the continuous QTL location and effect variables equals one. In
analogy with Remark 4.2, the acceptance probability for the move from (m, z) to (m —
1,2y =(m—1,21,...,2m_1) can readily be obtained:

f(zla m— 1|y)f(5ma T2)p(0m|)\lv 017 )‘m7 M7 m)
f(z,m|y)(Dk — D)

} (28)

Umm-1(2,2") = min{1,
where X' = (Ay,..., Ap—1) and 0 = (01,...,0m-1).

5.1.4 Discussion

For ease of exposition the last configuration in the list of QTL-configurations is determin-
istically chosen for a proposed removal. One could alternatively as in Sillanpaéd and Arjas
(1998) pick the QTL-configuration to be removed at random or perhaps introduce a new
type of move which “shuffles” the order of the QTL-configurations. Such a “shuffle” move
does not change the likelihood for the data and would therefore always be accepted. For
the same reason it would be natural to identify all vectors (21, ..., zm), (22,21, -+, Zm) - - -
which differ only by a permutation with the (unordered) set {zy,..., 2,} which could be
considered as a realization of a marked point process on D. The acceptance probability
(28) is then actually a special case of the acceptance probability derived in Geyer and
Mgller (1994) for Metropolis-Hastings simulation of finite point processes.

The new QTL effect 3, in section 5.1.2 is generated in a way similar to the proposal
used in Sillanpdd and Arjas (1998). A more elaborate method for generating £, is used in
Satagopan and Yandell (1996).
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