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1 Introduction

Cox processes play an important role for modeling of a wide variety of spatial point
patterns. In the literature on inference for spatial Cox processes, stationarity has often
been a fundamental assumption. However, the examples in Section 2 illustrate that it is
often important to take into account inhomogeneity due to varying observation conditions
or spatially varying covariates.

Likelihood-based inference for Cox processes can be carried out using Markov chain
Monte Carlo methods, see [12] and [14]. However, the Markov chain Monte Carlo ap-
proach is computationally demanding and not yet amenable for routine analyses by non-
specialists. On the other hand, second order summary statistics like the K-function and
the pair correlation function are often available in closed form. Minimum contrast esti-
mation has therefore been a popular approach to parameter estimation where parameter
estimates are chosen to minimize an integrated squared distance between non-parametric
estimates of the summary statistic and its theoretical expression, see [8], [13], [6], or [12].

Minimum contrast estimation has mainly been applied to stationary Cox processes.
In Section 3, however, we consider examples of inhomogeneous Cox processes which have
both known intensity function and known pair correlation/K-function. Minimum contrast
estimation and estimating functions based on the intensity function or the second order
product density then provide computationally cheap alternatives to maximum likelihood
estimation, see Section 4. A case study of likelihood-based inference is considered in
Section 5.

2 Data examples

Figure 1 shows positions of 55 minke whales (balaneoptera acutorostrata) observed in a
part of the North Atlantic near Spitzbergen. The whales are observed visually from a ship
sailing along predetermined so-called transect lines. The point pattern can be thought of
as an incomplete observation of all the whale positions, since it is only possible to observe
whales within the vicinity of the ship. Moreover, whales within sighting distance may fail
to be observed due to bad weather conditions or if they are diving. The probability of
observing a whale is a decreasing function of the distance from the whale to the ship and
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Fig. 1: Observed whales along transect lines. The enclosing rectangle is of
dimensions 263 km by 116 km.

Fig. 2: Locations of Beilschmiedia pendula Lauraceae trees.

is effectively zero for distances larger than 2 km. The objective is to estimate the whale
intensity. When estimating the uncertainty of the intensity estimate it is important to
take into account that the whales tend to cluster around locations of high prey intensity.
More details on the data set can be found in [14].

In studies of biodiversity of tropical rain forests, it is of interest to study whether
the spatial patterns of the many different tree species can be related to spatial variations
in environmental variables concerning topography and soil properties. Figure 2 shows
positions of 3605 Beilschmiedia pendula Lauraceae trees in a 1000 m by 500 m rectangular
observation window in the tropical rain forest of Barro Colorado Island. This data set is
a part of a much larger data set containing positions of hundreds of thousands of trees
belonging to thousands of species, see [4, 5, 9]. In addition to the tree positions, covariate
information on altitude and norm of altitude gradient is available, see Figure 3, and the
question is whether the intensity of Beilschmiedia trees may be viewed as a spatially
varying function of the covariates. In the study of this question it is, as for the whales,
important to take into account clustering — in this case due to tree reproduction by seed
dispersal and possibly unobserved covariates.
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Fig. 3: Altitude (left plot) in meter and norm of altitude gradient (right plot).

3 Inhomogeneous Cox processes with known first and second

order properties

In the following X denotes a Cox process on a subset S of the plane and driven by a
non-negative random intensity function Λ = (Λ(u))u∈S. That is, conditional on Λ, X is
a Poisson process with intensity function Λ. In the following we consider two important
classes of spatial Cox processes.

3.1 Log Gaussian Cox process

In analogy with random effect models one may define a random intensity function by

log Λ(u) = z(u)βT + Ψ(u)

where Ψ = (Ψ(u))u∈S is a zero-mean Gaussian process. Then X is a log Gaussian Cox
process [11].

The intensity function

log ρ(u) = z(u)βT + c(u, u)/2 (1)

is log linear where c(u, v) = EΨ(u)Ψ(v) denotes the covariance function of Ψ. The co-
variance function c and the pair correlation function g are in a one-to-one correspondence
as

g(u, v) = exp(c(u, v))

and higher-order product densities are nicely expressed in terms of ρ and g [11].
For the tropical rain forest trees in Figure 2, we consider later on inference for

a log Gaussian Cox process with z(u) = (1, z2(u), z3(u)) where z2(u) and z3(u) de-
note the altitude and gradient covariates at u. An exponential covariance function
c(u, v) = σ2 exp(−‖u−v‖/φ) is used for the Gaussian process, where σ and φ are positive
parameters.

3.2 Shot-noise Cox process

A shot noise Cox process X has

Λ(u) =
∑

(c,γ)∈Φ

γk(c, u) (2)
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where Φ is a Poisson process on R2 × (0,∞) and k(c, ·) is a density for a two-dimensional
continuous random variable [10]. The process is an example of a Poisson cluster process,
since X is distributed as the superposition (i.e. union) of independent Poisson processes
X(c,γ) with intensity functions γk(c, ·), (c, γ) ∈ Φ, where we interpret X(c,γ) as a cluster
with centre c and mean number of points γ.

A special case is a Neyman-Scott process X, where the centre points form a stationary
Poisson process with intensity κ and the γ’s are all equal to a positive parameter α. If
furthermore k(c, ·) is a bivariate normal density with mean c and covariance matrix ω2I,
then X is a Thomas process. A Neyman-Scott process is stationary with intensity ρ = ακ,
and the Thomas process is also isotropic with

g(r) = 1 + exp
(

−r2/(4ω2)
)

/(4πκω2), r > 0. (3)

In [14], the positions of minke whales in Figure 1 are modeled as an independent
thinning of a shot noise Cox process. Letting p(u) denote the probability of observing
a whale at location u, the process of observed whales is a Cox process too with random
intensity function Λ(u) = p(u)

∑

(c,γ)∈Φ γk(c, u). The cluster centres c are assumed to form
a stationary Poisson process, and given the c’s, the γ’s are i.i.d. gamma random variables
with unit scale parameter. The kernel k(c, ·) is the density of N2(c, ω

2I) restricted to
c+ [−3ω, 3ω]2.

Spatial covariates may naturally be introduced using a multiplicative model

Λ(u) = exp
(

z(u)βT
)

∑

(c,γ)∈Φ

γk(c, u) (4)

[15]. A nice feature of the latter model is that the pair correlation function of X is the same
for (2) and (4), i.e. it does not depend on the parameter β. In addition to the log Gaussian
Cox process model for the tropical trees, we consider an inhomogeneous Thomas process
of the form (4) where the random intensity function of a stationary Thomas process
is multiplied by exp(β2z2(u) + β3z3(u)) where z2(u) and z3(u) are specified as for the
log Gaussian Cox process model. The intensity function of the inhomogeneous Thomas
process is

ρ(u) = κα exp (β2z2(u) + β3z3(u)) (5)

while the pair correlation function is equal to (3).

4 Simulation-free estimation procedures

In this section x denotes an observation of X ∩W where W is a bounded observation
window.

4.1 Estimation of the intensity function

Suppose that the intensity function ρθ of the point process X is known on closed form
and depends on the unknown parameter θ, cf. (1) and (5). Consider a finite partitioning
Ci, i ∈ I of the observation window W into disjoint cells Ci of small areas |Ci|, and let
ui denote a representative point in Ci. Let Ni = 1[X ∩ Ci 6= ∅] and pi(θ) = Pθ(Ni = 1).
Then pi(θ) ≈ ρθ(ui)|Ci| and the composite likelihood based on the Ni, i ∈ I, is

∏

i∈I

pi(θ)
Ni(1 − pi(θ))

(1−Ni) ≈
∏

i

(ρθ(ui)|Ci|)
Ni(1 − ρθ(ui)|Ci|)

1−Ni .
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We neglect the factors |Ci| in the first part of the product, since they cancel when we
form likelihood ratios. In the limit, under suitable regularity conditions and when the cell
sizes |Ci| tend to zero, the log composite likelihood becomes

∑

u∈x

log ρθ(u) −
∫

W
ρθ(u) du

which coincides with the log likelihood function in the case of a Poisson process with
intensity function ρθ. The corresponding estimating function is given by the derivative

ψ1(θ) =
∑

u∈x

d log ρθ(u)/dθ −
∫

W
(d log ρθ(u)/dθ)ρθ(u) du. (6)

By the Campbell theorem ψ1(θ) = 0 is an unbiased estimating equation, and it can easily
be solved using e.g. spatstat [2] provided ρθ is on log linear form.

For both the log Gaussian Cox process model and the inhomogeneous Thomas pro-
cess model proposed for the tropical tree data, the intensity function is of the form
exp(z(u)(β̃1, β2, β3)

T) where β̃1 = σ2/2 + β1 in the log Gaussian Cox process case and
β̃1 = log(κα) for the inhomogeneous Thomas process. Using the estimating function (6)

and spatstat, we obtain ( ˆ̃β1, β̂2, β̂3) = (−4.99, 0.02, 5.84). The estimate of course coin-
cides with the MLE under the Poisson process with the same intensity function. Estimates
of the clustering parameters (σ2, φ) respectively (κ, ω) may be obtained using minimum
contrast estimation, see Section 4.3.

4.2 Asymptotic normality of regression parameter estimates

For an inhomogeneous Neyman-Scott process with random intensity function of the form
(4) it is easy to establish asymptotic normality of the estimating function (6) in the asymp-
totic setup of increasing κ, i.e. increasing intensity of the mother points [15]. Asymptotic
normality of the parameter β then follows using standard asymptotic results for estimat-
ing functions. Simulation studies in [15] suggest that the approximate normality is valid
even for moderate values of κ.

Hence for the inhomogeneous Thomas model used for the tropical tree data, (β̂2, β̂3)
is asymptotically normal as β̃1 → ∞ and we obtain approximate 95% confidence intervals
[−0.02, 0.06] and [0.89, 10.80] for β2 and β3, respectively. Under the Poisson process model
much more narrow approximate 95% confidence intervals [0.02, 0.03] and [5.34, 6.34] are
obtained (again the asymptotics is for increasing β̃1).

4.3 Minimum contrast estimation of clustering parameters

The solid curve in Figure 4 shows an estimate of the K-function for the tropical rain
forest trees obtained using

K̂(r) =
∑

u,v∈x

1[0 < ‖u− v‖ ≤ r]

ρ̂(u)ρ̂(v)|W ∩Wu−v|

[1] with ρ̂ given by the estimated parametric intensity function from Section 4.1.
For the inhomogeneous Thomas process, a minimum contrast estimate (κ̂, ω̂) = (8e−5, 20)

is obtained by minimizing

∫ 100

0
(K̂(r)1/4 −K(r;κ, ω)1/4)2dr (7)
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Fig. 4: Estimated K-function for tropical rain forest trees and theoretical K-
functions for fitted Thomas, log Gaussian Cox, and Poisson processes.

where

K(r;κ, ω) = πr2 + (1 − exp(−r2/(4ω)2))/κ

is the theoretical expression for the K-function. For the log Gaussian Cox process, we
calculate instead the theoretical K-function

K(r;σ, φ) = 2π
∫ r

0
s exp

(

σ2 exp(−s/φ)
)

ds

using numerical integration, and obtain the minimum contrast estimate (σ̂, φ̂) = (1.33, 34.7).
The estimated theoretical K-functions are shown in Figure 4.

Minimum contrast estimation is computationally very easy. A disadvantage is the
need to choose certain tuning parameters like the upper limit 100 and the exponent 1/4
in the integral (7). Typically, these parameters are chosen on an ad hoc basis.

4.4 An estimating function based on the second order product density

The estimating function (6) is based on the intensity function which is also known as the
first order product density. Alternatively, we may consider an estimating function based
on the second order product density ρ

(2)
θ (u, v) = ρθ(u)ρθ(v)gθ(u, v):

ψ2(θ) =
6=

∑

u,v∈x

d log ρ
(2)
θ (u, v)/dθ −

∫

W 2

(

d log ρ
(2)
θ (u, v)/dθ

)

ρ
(2)
θ (u, v) dudv. (8)
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This is the score of a limit of composite log likelihood functions based on Bernouilli
observations Nij = 1[X ∩ Ci 6= ∅,X ∩ Cj 6= ∅], i 6= j. The integral in (8) typically must
be evaluated using numerical integration. In the stationary case, [7] considers a related
unbiased estimating function, where the integral is replaced by the number of pairs of
distinct points times log

∫

W 2 ρ(2)(u, v) dudv.
The estimating function (8) allows simultaneous estimation of the parameters (β̃1, β2, β3)

and (κ, ω) for the inhomogeneous Thomas process. For fixed values of ω, ψ2(θ) = 0 is
solved with respect to the other parameters using Newton-Raphson (Newton-Raphson for
all the parameters jointly turns out to be numerically unstable). We then search for an
approximate solution with respect to ω within a finite set of ω-values. The resulting esti-
mates of (β̃1, β2, β3) and (κ, ω) are respectively (−5.00, 0.02, 5.73) and (0.00007, 30). The
estimate of ω differs considerably from the minimum contrast estimate while the remaining
estimates are quite similar to those obtained previously for the inhomogeneous Thomas
process. The numerical computation of ψ2 and its derivatives is quite time consuming
and the whole process of solving ψ2(θ) = 0 takes about one hour.

In a small scale simulation study, ψ2 provided a slightly more efficient estimate of
(β2, β3) than ψ1. On the other hand, the minimum contrast estimate of (κ, ω) was more
efficient than the ψ2 estimate.

5 Likelihood-based inference for North Atlantic whales

For a Cox process, the likelihood function is given by

L(θ) = Eθf(x|Λ)

where f(x|Λ) is the Poisson process density of X∩W given Λ and the expectation is with
respect to the distribution of Λ which we assume is parametrized by θ. In general, the
only way to compute likelihood ratios or likelihood function derivatives, is to use Monte
Carlo based on conditional simulations of (Λ(u))u∈W given X ∩W = x [12, 14].

For the shot noise Cox process model for the whales in Section 3.2, the unknown
parameters are the intensity κ of the cluster centres, the mean number α of whales per
cluster, and the standard deviation ω of the Gaussian density. Since the kernel function
k is assumed to have bounded support, (Λ(u))u∈W is given in terms of a finite Poisson
process Φ ∩ B × (0,∞) where B is chosen so that points (c, γ) with c outside B do not
contribute to (Λ(u))u∈W . To implement Monte Carlo estimation of the likelihood function
it is then required to simulate Φ ∩ B × (0,∞) given X ∩W = x. This is done in [14]
using a certain Gibbs sampler strategy where birth-death updates are used to update
Φ∩B× (0,∞) conditional on all whales (both the observed whales X∩W = x and those
which were missed) and where the unobserved whales are sampled jointly from the Poisson
process distribution of the unobserved whales given Φ ∩ B × (0,∞) and X ∩W = x.

Since it is difficult to evaluate the components of the score function and observed in-
formation corresponding to the parameter ω, [14] compute the profile likelihood function
lp(ω) = max(κ,α) logL(θ) for a finite set of ω-values ω1, . . . , ωm. This is done by cu-

mulating log likelihood ratios logL(θ̂l+1) − logL(θ̂l) where θ̂l = (κ̂l, α̂l, ωl) and (κ̂l, α̂l) =
arg max(κ,α) logL(κ, α, ωl) is obtained using Newton-Raphson. The profile likelihood func-
tion is shown in Figure 1 (left plot) and gives ω̂ = ω5 = 0.6 with corresponding values
κ̂5 = 0.025 and α̂5 = 2.4 found using Newton-Raphson. These numbers yield an estimated
whale intensity of 0.06 whales per km2 with a 95% parametric bootstrap confidence inter-
val [0.03, 0.08]. Figure 1 (right plot) shows the fitted L-function; note the high variability
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Figure 1: Fitting a shot noise Cox process model to the North Atlantic whales data
set. Left: profile log likelihood function lp(ω) = max(κ,α) logL(θ) obtained by cumulating
estimated log likelihood ratios, see text. The small horizontal bars indicate 95% Monte
Carlo confidence intervals for the log likelihood ratios. Right: non-parametric estimate of
L(r) − r (solid line), 95% confidence envelopes based on simulations of fitted shot noise
Cox process (dotted lines), L(r) − r = 0 for a Poisson process (lower dashed line), and
L(r) − r > 0 for the fitted shot noise Cox process (upper dashed line).

of the non-parametric estimate of the L-function, cf. the envelopes computed from sim-
ulations of the fitted model. For this particular example, the computation of the profile
likelihood function is very time consuming and Monte Carlo error occasionally caused
negative definite estimated observed information matrices.

From a computational point of view, the Bayesian approach is quite appealing. The
need for computing the likelihood function is eliminated by a demarginalization strategy
where the unknown random intensity function or cluster centre process is considered as an
unknown parameter along with the original parameter θ. This simplifies computations,
since the likelihood of the data given θ and the random intensity function is just a Poisson
likelihood function. In [14], the unknown parameters κ, α, and ω are assumed to be a priori
independent with uniform priors on bounded intervals for κ and ω and an informative
N(2, 1) (truncated at zero) prior for α (the whales are a priori believed to appear in small
groups of 1-3 animals). The posterior means for κ, α, and ω are 0.027, 2.2, and 0.7, and
the posterior mean of the whale intensity is identical to MLE. There is moreover close
agreement between the 95% confidence interval and the 95 % central posterior interval
[0.04, 0.08] for the whale intensity.

Bayesian inference for a log Gaussian Cox process in the context of disease mapping
is considered by [3].

6 Conclusion

Likelihood-based inference for spatial Cox processes is becoming increasingly feasible as
cheap and powerful computers become available. However depending on the particular
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application, the Markov chain Monte Carlo approach may still require many ours of
computing time. Hence there is still need to develop simple simulation-free estimation
methods and to study asymptotic properties of the associated parameter estimates.
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