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1. CONDITIONS AND LEMMAS

To verify the existence of a |Wn|
1/2 consistent sequence of solutions β̂n, we assume that the

following conditions are satisfied:

C1 λ(u;β) = λ(z(u)βT) where λ(·) > 0 is twice continuously differentiable and
supu∈R2 ‖z(u)‖ < K1 for some K1 < ∞.

C2 for some 0 < K2 < ∞,
∫

R2

∣

∣g(r;ψ∗)− 1
∣

∣dr ≤ K2.
C3 φn,θ(u,β) is differentiable with respect to θ and β, and for |φn,θ(u,β)|, |dφn,θ(u,β)/dβ|

and |dφn,θ(u,β)/dθ|, the supremum over u ∈ R
2,β ∈ b(β∗,K3), θ ∈ b(θ∗,K3) is

bounded for some K3 > 0, where b(x, r) denotes the ball centred at x with radius
r > 0.

C4 |Wn|
1/2(θ̃n − θ∗) is bounded in probability.

C5 l = lim infn ln > 0, where for each n, ln denotes the minimal eigenvalue of

S̄n,θ∗(β∗) = |Wn|
−1

EJn,θ∗(β∗) = |Wn|
−1

∫

Wn

φn,θ∗(u)Tλ′(u;β∗)du.

Condition C1 and C2 imply L1 and L2 below.

L1 for λ(u;β), λ′(u;β) and λ′′(u;β), the supremum over u ∈ R
2,β ∈ b(β∗,K3), θ ∈

b(θ∗,K3) is bounded.
L2 for a function h : R2 → R,

Var
∑

u∈X∩Wn

h(u) ≤ |Wn|
[

1 + sup
u∈Wn

λ(u;β∗)K2

]

sup
u∈Wn

h(u)2 sup
u∈Wn

λ(u;β∗).

In particular, |Wn|
−1

Var
∑

u∈X∩Wn
h(u) is bounded when h is bounded.
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The condition C3 is not so easy to verify in general due to the abstract nature of the
function φn,θ. However, it can be verified e.g. assuming that φn,θ can be expressed using
the Neumann series. Condition C4 holds under conditions specified in Waagepetersen and
Guan (2009) (including e.g. C1 and C2). Condition C5 is not unreasonable since

S̄n,θ∗(β∗) = |Wn|
−1

∫

Wn

[ λ′(u;β∗)

λ(u;β∗)1/2

]T[

(I+T
s
n,θ∗)−1 λ

′(·;β∗)

λ(·;β∗)1/2

]

(u)du

and (I+T
s
n,θ∗)−1 is a positive operator (see Section 3.1 in main text). Since Σ̄n = S̄n,θ∗(β∗),

C5 also implies

L3 l = lim infn ln > 0 where for each n, ln denotes the minimal eigenvalue of Σ̄n.

To prove the asymptotic normality of |Wn|
−1/2

en,θ̃n
(β∗)Σ̄

−1/2
n , we assume that the

following additional conditions are satisfied:

N1 Wn = nA where A ⊂ (0, 1] × (0, 1] is the interior of a simple closed curve with
nonempty interior.

N2 supp
α(p;k)

p = O(k−ǫ) for some ǫ > 2, where α(p; k) is the strong mixing coefficient

(Rosenblatt, 1956). For each p and k, the mixing condition measures the dependence
between X ∩E1 and X ∩E2 where E1 and E2 are arbitrary Borel subsets of R2 each
of volume less than p and at distance k apart.

N3 for some K4 < ∞ and k = 3, 4,

sup
u1∈R2

∫

R2

· · ·

∫

R2

∣

∣Qk(u1, · · · ,uk)
∣

∣du2 · · · duk < K4,

where Qk is the k-th order cumulant density function of X (e.g. Guan and Loh, 2007).

Conditions N1-N3 correspond to conditions (2), (3) and (6), respectively, in Guan and Loh
(2007). See this paper for a discussion of the conditions.

2. EXISTENCE OF A |Wn|
1/2 CONSISTENT β̂n

We use Theorem 2 and Remark 1 in Waagepetersen and Guan (2009) to show the existence

of a |Wn|
1/2 consistent sequence of solutions β̂n. Let ‖A‖M = supij |aij | for a matrix

A = [aij ]ij . With Vn = |Wn|
1/2

Σ̄
1/2
n we need to verify the following results:

R1 ‖V−1
n ‖M → 0.

R2 For any d > 0,

sup
β:‖(β−β∗)Vn‖≤d

‖V−1
n

[

Jn,θ̃n
(β)− Jn,θ̃n

(β∗)
]

V
−1
n ‖M

converges to zero in probability.
R3 ‖Jn,θ̃n

(β∗)/|Wn| − S̄n,θ∗(β∗)‖M converges to zero in probability.

R4 en,θ̃n
(β∗)V−1

n is bounded in probability.
R5 lim infn ln > 0 where

ln = inf
‖x‖=1

xΣ̄
−1/2
n S̄n,θ∗(β∗)Σ̄

−1/2
n x

T.
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We now demonstrate that R1-R5 hold under the conditions C1-C5 listed in Appendix 1.
For each of the results below the required conditions or previous results are indicated in
square brackets.

R1 [C3, L1-L3]: By C3, L1 and L2 the entries in Σ̄n are bounded from below and above.
Moreover, by L3 the determinant of Σ̄n is bounded below by lp > 0.

R2 [R1, C3, L1, L2, C4]: We show that

sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

‖|Wn|
−1

[

Jn,θ(β)− Jn,θ∗(β∗)
]

‖M

converges to zero in probability. Note

|Wn|
−1

Jn,θ(β) = Ln,θ(β) +Mn,θ(β)

where

Ln,θ(β) = −
∑

u∈X

f1,n,θ(u,β) and Mn,θ(β) =

∫

R2

f2,n,θ(u,β)

with

f1,n,θ(u,β) =
1[u ∈ Wn]

|Wn|

d

dβT
φn,θ(u,β)

and

f2,n,θ(u,β) =
1[u ∈ Wn]

|Wn|

[

λ(u;β)
d

dβT
φn,θ(u,β) + λ

′(u;β)Tφn,θ(u,β)
]

.

Define

hi,n(u) = sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

|fi,n,θ(u,β)− fi,n,θ∗(u,β∗)|, i = 1, 2

and note that hi,n(u) converge to zero as n → ∞. Then

sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

|Mn,θ(β)−Mn,θ∗(β∗)| ≤

∫

R2

h1,n(u)du

where the right hand side converges to zero by dominated convergence. Moreover,

sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

∣

∣Ln,θ(β)− Ln,θ∗(β∗)
∣

∣ ≤
∑

u∈X

h2,n(u) ≤

∣

∣

∣

∑

u∈X

h2,n(u)− E

∑

u∈X

h2,n(u)
∣

∣

∣
+
∣

∣

∣
E

∑

u∈X

h2,n(u)
∣

∣

∣
.

The first term on the right hand side converges to zero in probability by Chebyshev’s
inequality and the second term converges to zero by dominated convergence.

R3 [R1, L1, L2, C4]:

|Wn|
−1

Jn,θ̃n
(β∗)− S̄n(β

∗) =

|Wn|
−1

[

Jn,θ̃n
(β∗)− Jn,θ∗(β∗)

]

+
[

|Wn|
−1

Jn,θ∗(β∗)− S̄n(β
∗)
]
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It follows from the proof of R2 that the first term on the right hand side converges to zero
in probability. The last term converges to zero in probability by Chebyshev’s inequality.

R4 [C3, L1, L2, C4]: Since Varen,θ∗(β∗)V−1
n is the identity matrix, en,θ∗(β∗)V−1

n is
bounded in probability by Chebyshev’s inequality. The result then follows by showing
that |Wn|

−1/2
[

en,θ̃n
(β∗)− en,θ∗(β∗)

]

converges to zero in probability. Let

fn(θ) = |Wn|
−1 d

dθT
en,θ(β

∗) =

|Wn|
−1

[

∑

u∈X∩Wn

d

dθT
φn,θ(u,β

∗)−

∫

Wn

λ(u;β∗)
d

dθT
φn,θ(u,β

∗)du
]

.

Then
|Wn|

−1/2
[

en,θ̃n
(β∗)− en,θ∗(β∗)

]

= |Wn|
1/2(θ̃n − θ∗)fn(tn)

where ‖tn − θ∗‖ ≤ ‖θ̃n − θ∗‖ and the factor |Wn|
1/2(θ̃n − θ∗) is bounded in probability.

Further,
fn(tn) = fn(tn)− fn(θ

∗) + fn(θ
∗)

where fn(θ
∗) converges to zero in probability by Chebyshev’s inequality and fn(tn)− fn(θ

∗)
converges to zero in probability along the lines of the proof of R2.

R5 [C5, L3]: Follows directly from C5 and L3.

3. ASYMPTOTIC NORMALITY OF |Wn|
−1/2

en,θ̃n
(β∗)Σ−1/2

n

By the proof of R4 it suffices to show that |Wn|
−1/2

en,θ∗(β∗)Σ̄
−1/2
n is asymptotically nor-

mal. To do so we use the blocking technique used in Guan and Loh (2007). Specifically,
Condition N1 implies that there is a sequence of windowsWB

n = ∪kn

i=1W
i
n given for each n by

a union of mn×mn sub squares W i
n, i = 1, · · · , kn, such that |WB

n |/|Wn| → 1, mn = O(nα)
and the inter-distance between any two neighbouring sub squares is of order nη for some
4/(2 + ǫ) < η < α < 1. Let

e
B
n,θ∗(β) =

∑

u∈X∩WB
n

φn,θ∗(u;β)−

∫

WB
n

φn,θ∗(u;β)λ(u;β)du ≡

kn
∑

i=1

e
B,i
n,θ∗(β),

where

e
B,i
n,θ∗(β) =

∑

u∈X∩W i
n

φn,θ∗(u;β)−

∫

W i
n

φn,θ∗(u;β)λ(u;β)du.

Define

ẽ
B
n,θ∗(β) =

kn
∑

i=1

ẽ
B,i
n,θ∗(β),

where the ẽ
B,i
n,θ∗(β)’s are independent and for each i and n, ẽ

B,i
n,θ∗(β) is distributed as

e
B,i
n,θ∗(β). Let Σ̄

B
n = |WB

n |−1
VareBn,θ∗(β∗) and Σ̃

B

n = |WB
n |−1

VarẽBn,θ∗(β∗). We need to
verify the following results:
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S1 ||Σ̃
B

n − Σ̄
B
n ||M → 0 and ||Σ̄

B
n − Σ̄n||M → 0 as n → ∞,

S2 |WB
n |−1/2

ẽ
B
n,θ∗(β

∗)
(

Σ̃
B

n

)−1/2

is asymptotically standard normal,

S3 |WB
n |−1/2

e
B
n,θ∗(β∗)

(

Σ̃
B

n

)−1/2

has the same asymptotic distribution as

|WB
n |−1/2

ẽ
B
n,θ∗(β∗)

(

Σ̄
B
n

)−1/2

,

S4 ‖|WB
n |−1/2

e
B
n,θ∗(β∗)− |Wn|

−1/2
en,θ∗(β∗)‖ converges to zero in probability.

S1 [C2, C3, N1]: This follows from the proof of Theorem 2 in Guan and Loh (2007).

S2 [C2, C3, N3]: Conditions C2, C3 and N3 imply E[ẽin,θ∗(β)4] is bounded (see the proof
of Lemma 1 in Guan and Loh, 2007). Thus, S2 follows from an application of Lyapunov’s
central limit theorem.

S3 [N2]: this follows by bounding the difference between the characteristic functions of
|WB

n |−1/2
e
B
n,θ∗(β∗) and |WB

n |−1/2
ẽ
B
n,θ∗(β∗) using techniques in Ibramigov and Linnik (1971)

and secondly applying the mixing condition N2, see also Guan et al. (2004).

S4 [C1-C3, C5, N1]: Recall that |WB
n |/|Wn| → 1 due to N1. By C5 we only need to

show Var
[

en,θ∗(β∗) − e
B
n,θ∗(β∗)

]

/|Wn| → 0. This is implied by conditions C1-C3 and

|WB
n |/|Wn| → 1.
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