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Abstract

This paper considers the problem of mapping spatial variation of yield in a field using
data from a yield monitoring system on a combine harvester. The unobserved yield
is assumed to be a Gaussian random field and the yield monitoring system data is
modelled as a convolution of the yield and an impulse response function. This results
in an unusual spatial covariance structure (depending on the driving pattern of the
combine harvester) for the yield monitoring system data. Parameters of the impulse
response function and the spatial covariance function of the yield are estimated using
maximum likelihood methods. The fitted model is assessed using certain empirical
directional covariograms and the yield is finally predicted using the inferred statistical
model.
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1 Introduction

Precision farming is an agricultural practice where e.g. fertilizers and pesticides are allo-
cated to the field according to locally determined requirements. Precision farming brings
up a lot of new and interesting applications of spatial statistics since it is required to map
many types of variables like yield, weed occurrence, soil properties, root zone capacity etc.
In this paper we consider the problem of modelling and mapping the spatial variation of
yield in a field. Modern combine harvesters carry a differential global positioning system
and a yield monitoring system. (A yield monitoring system is also known as a yield meter
— in the sequel we use this shorter term.) These two systems provide corresponding posi-
tion and yield data. However, certain delay and smoothing effects in the combine harvester



must be taken into account when devising a procedure for yield mapping based on yield
meter data.

The delay and smoothing effects in the combine harvester are due to the transport time
of the grain from the cutterbar (where the crop is cut) to the yield meter and mixing of
grain harvested at different locations. A detailed modelling of the grain flow is not feasible
and a simplifying assumption is that a yield meter observation is given by a convolution
of the unobserved yield and a so-called impulse response function (a kernel integrating to
1), see e.g. Lark et al. (1997). Empirical estimation of the impulse response function can
be performed by marking crop in a suitably small region with a dye or water and use this
as an “impulse” input to the combine harvester. Subsequently, corresponding observations
of the proportion of marked yield in the output of the combine harvester and of distance
from the impulse region provides an approximation to the impulse response function. Non-
parametric estimation of the impulse response function based on this approach is considered
in Whelan & McBratney (1997) and parametric estimation in Lark et al. (1997), Pringle
et al. (1999), and Whelan & McBratney (2002).

Attempts to deconvolve yield meter data using an estimated impulse response function
and Fourier methods have been made with varying success in Lark et al. (1997), Pringle
et al. (1999), and Whelan & McBratney (2000). The deconvolution problem is ill-posed
and Whelan & McBratney (2000) apply presmoothing of the yield meter data in order to
reduce the noise sensitivity of the solution. Regularization methods (see e.g. the review in
O’Sullivan, 1986) are not considered. After deconvolution a next step would be to create
a yield map by interpolating the deconvolved values.

The approach in this paper differs from the previous research in that we consider pa-
rameter estimation and deconvolution within the framework of spatial statistics (Ripley,
1981; Cressie, 1993; Stein, 1999). The yield is assumed to be a realization of a random
field and a spatial model for the yield meter data is then induced by the convolution of the
yield with the impulse response function. Our modelling is thus closely related to recent
work in spatial statistics (Higdon, 1998; Higdon et al., 1999; Fuentes & Smith, 2001) where
non-stationary random field models are constructed using convolutions of stationary ran-
dom fields with spatially varying smoothing kernels. We adopt a parametric modelling for
both the impulse response function and the covariance function of the yield and compute
maximum likelihood estimates of the parameters. Secondly, we use the inferred statistical
model to compute the expected value of the yield given the observed yield meter data on
a dense grid of locations. This is minimum mean squared error prediction but can also be
viewed as a deconvolution where a regularization is imposed by the spatial covariance of
the yield. The advantages of our approach are that we obtain parameter estimates with-
out expensive experimental field trials and that the estimated spatial covariance function
provides a data driven regularization function.

In Section 2 we describe a specific yield meter dataset and present various exploratory
analyses. Modelling of yield meter data is discussed in Section 3. Non-parametric and
parametric estimation is considered in Section 4 and Section 5, and deconvolution is dis-
cussed in Section 6. The methodology is applied to the yield meter dataset in Section 7.
Section 8 finally discusses various open problems.



2 A yield meter dataset

In this paper we consider 3360 yield meter observations from an experimental field at
Veddelev belonging to Risg National Laboratory in Denmark. The field was grown with
barley and different amounts of nitrogen (0, 54, 90, or 116 kg N/ha) were applied in
parallel strips. Each of these strips were harvested separately. The driving tracks of the
combine harvester are shown in Figure 1. The 3360 sampling locations on the rather
irregularly shaped field are located on the driving tracks with approximately 6 m between
each track and approximately 4 m between consecutive sampling locations on the tracks.
For convenience the UTM-coordinates have been rotated so that the driving tracks are
parallel to the first axis. The empirical treatment means/std. deviations are 3.88/0.51,
5.11/0.46, 5.41/0.42, and 5.54/0.35, for 0, 54, 90, and 116 kg N/ha, respectively. These
values indicate that the amount and uniformity of the yield is positively correlated with
the amount of nitrogen applied.
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Figure 1: Driving tracks of combine harvester, arrows indicate driving direction.

In order to study the spatial distribution of the yield we first obtain residual yield meter
values by subtracting the appropriate empirical treatment means from the observations.
Figure 2 shows an interpolated map of residual yield meter values obtained using kernel
smoothing with a subjectively chosen bandwidth equal to 15 m. The interpolated values
range between -1.41 and 0.93. There is no obvious pattern of non-stationarity in the
residual yield meter values.

The univariate distribution of the residual yield meter values appears to be close to
a zero-mean normal distribution, see Figure 3. In Section 4 we further consider certain
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Figure 2: Interpolated residual yield meter values on a 5 m x 5 m grid. Light gray scales
correspond to small values, see also the legend in the plot. The white line shows the outline
of the field (i.e. the region occupied by the driving tracks in Figure 1).

empirical directional covariograms for the yield meter data.
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Figure 3: Histogram and quantile plot of residual yield values.

1.0

600
0.5

200 400
-0.5 0.0

-1.0

-1.5

-2 0 2
Quantiles of Standard Normal




3 Spatial modelling of yield meter data

Following the discussion in Section 1 we assume that the unobserved yield is a realization
of a random field Z = {Z(x) : x € D} where D is an index set of the field. For a location
x € D we further assume that the yield meter value at x is given by

Y(z) = /Dmd(m) (x — s)Z(s)ds + e(x)

where £ (y) is the impulse response function, d(x) denotes the driving direction at x (d(x) =
WE, from west to east, or d(z) = EW, from east to west), and £(z) is measurement noise.
Parametric modelling of the impulse response function is considered in Section 3.1. We
refer in the following to Y = {Y(x) : x € D} as the yield meter process.

For the yield process Z we let m(z) = E(Z(z)) and assume that the residual yield
process 6(x) = Z(x) — m(z), v € D, forms a Gaussian field with constant variance and
isotropic covariance function

(||l —z|) =E (6(2)d(2)), =,z € D.

The residual process 6 models variation of the yield caused, for example, by soil properties
not accounted for in the mean structure of Z. The parametric model for ¢ is discussed
in Section 3.2. The measurement error process ¢ = {e(z) : * € D} is assumed to be
zero-mean Gaussian with variance o2, independent of Z, and with E (e(x)e(Z)) = 0 for
x # %, x,7 € D. The Gaussian assumptions for Z and e are convenient for computational
reasons and do not seem unreasonable when considering Figure 3. The model assumptions
are further discussed in Section 7.3. In order to avoid edge effects we consider in the

following an infinitely large field D = R2.

3.1 Modelling of the impulse response function

The impulse response function k4 is assumed to be of the product form
ka((21, 22)) = K14(21)k2(22), d = WE,EW, (1)

where ki1pw(21) = K1we(—21), and k14(+) and ky(-) are probability densities.

Considering first k14, the delay/smoothing effect in the combine harvester may as sug-
gested in Whelan & McBratney (2002) be modelled by a convection-dispersion equation
known from mass flow studies in hydrology and soil sciences (see e.g. Jury et al., 1991).
The resulting impulse response function is given by an inverse Gaussian IG(u, \) density,
ie.

A A 9
Kiwe(21) = 27rz{’ exXp <_22'1M2 (21— ) )1{z1>0} (2)

where 41, A > 0 and 1y, denotes the indicator function, see Figure 4 for some plots of (2).
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Figure 4: Plot of (2) with (A, ) = (0.64,8.0) (dashed line) and (A, u) = (3.27,00) (solid
line). The dotted line is an impulse response function obtained in Pringle et al. (1999) as
a mixture of inverse Gaussian densities. More comments are given in Section 7.1.

For simplicity we let ro(29) = %1{|z2‘<b/2}, i.e. a uniform density where b > 0 is the
width of the cutterbar. More general functions modelling the smoothing across the driving
direction could be chosen in order to capture different delay times across the swath; see
Whelan & McBratney (1997) for a study of grain flow in relation to crop position at the
cutterbar.

In relation to parameter estimation it is of interest to note that /G(u, A) tends to an
inverted Gamma distribution with shape parameter 1/2 and scale parameter A/2 when p
tends to infinity (Johnson et al., 1994). This means in practice that if the data dictates
high values of u, then we can effectively only identify A. It is then advantageous to replace
the IG(p, ) density with its limiting inverted Gamma density depending just on A.

3.2 Modelling of the yield process covariance function

The covariance function ¢ of the residual yield process ¢ is modelled as

L
c(rya,7) = ZTlQp(T/al), L>1,r>0, (3)
1=1

where the components in @ = (ay,...,ar) and 72 = (72,...,72) are positive and p is
a known correlation function. Specifically we use a so-called Gaussian correlation func-
tion p(r) = exp(—r?) since this leads to substantial computational simplifications, see
Example 1. In order to obtain an identifiable parametrization we order the pairs (77, o)
according to increasing value of a; so that a; < ap < --- < ay.



The model (3) corresponds to a decomposition § = Zle 0; of the yield into mutu-
ally uncorrelated zero mean random fields §; each with covariance function 72p(r/c;) and
exhibiting variation of varying frequency depending on the «;’s. In precision farming espe-
cially the slower varying components with large «;’s are of interest since there is a practical
limit as to how precisely e.g. fertilizer application can be adapted to high frequency varia-
tion in the yield.

3.3 Mean and covariance function of the yield meter process

The mean function of Y is given by

m(zx) = /R2 Ky (x — s)m(s)ds, v € R?,

The covariance between yield meter values at two locations x and & depends on x — 2 and
the directions d(x) and d(Z) in which the combine harvester was driving when it passed
the locations. If d(xz) = d(&) then Cov(Y (z),Y (Z)) = Ko(x — Z) 4+ 0213 where Kj is
given by

Ko(h) = /R? /R? rwe (W) rwe()c(||h — u + v||))dudv, h € R?, (4)

and if d(z) = WE and d(z) = EW then Cov(Y (2),Y(Z)) = Ki(z — ) + 021{,—5 with

Ki(h) = /Rz /R? rwe(w)kwe(v)e(||h —u — v|])dudo. (5)
If d(z) = EW and d(Z) = WE then Cov(Y (2),Y(2)) = K1(Z — x) + 021{,—5}.

REMARK 1 The mean function will typically be modelled as a linear regression m(x) =
f(z)'8 where f(z)is a p x 1 vector of known functions and 3 is a p x 1 parameter vec-
tor. Then also m(z) will be given by a linear regression m(x) = f(x)'3 where f(z) =

Jgs Ka@) (@ —s) f(s)ds. In Section 7 f is constant within the driving tracks whereby f = f.

REMARK 2 The function Kj is symmetric, i.e. Ko(h) = Ko(—h), h € R%. Since ¢ is as-
sumed to be isotropic, it follows from kwg((21,22)) = kwe((21, —22)) that Ko((h, ko)) =
Ko((h1, —hsg)). Combining this with symmetry of Ky we also get Ko((h1, he)) = Ko((—h1, he)).
For Ky we have: Ki((hy,hs)) = K1((h1,—hs)). These symmetry properties are used for
non-parametric estimation of Ky and K5 in Section 4.

Using spectral theory for spatial processes (4) and (5) can be simplified to two-dimensional
integrals, see Appendix A. For the so-called Gaussian covariance function, further simpli-
fication is possible as noted in the following example.

EXAMPLE 1 (SUM OF GAUSSIAN COVARIANCE FUNCTIONS) Under the model (3), both
(4) and (5) split into sums of L terms each as (4) or (5) but with ¢ replaced by Gaussian
covariance functions 77 exp(—r?/a?), r > 0. In Appendix B it is demonstrated that these
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terms can be reduced to products of one-dimensional integrals where one of the factors
is given in closed form. This is very advantageous for computational reasons. Figure 5
shows plots of a Gaussian covariance function ¢(r) = exp(—7r2?/15%) and the corresponding
functions Ky and K; computed using (21) and (24) in Appendix B.

Gaussian KO K1

Figure 5: Plots of the Gaussian covariance function exp(—7r?/15%), and corresponding
functions Ky and K; for A = 0.05, p = 10, and b = 6. Note the asymmetry of K; in the
east-west direction.

3.4 Related work on process convolutions

Modelling spatial processes as convolutions has a long history in spatial statistics with
Matérn (1960) (reprinted as Matérn, 1986) as an early reference. Recently, the use of con-
volutions for constructing models for non-stationary spatial processes has been suggested
in e.g. Higdon (1998) and Higdon et al. (1999), see also the survey Higdon (2001). Higdon
et al. (1999) for example consider the following construction

¥(z) = /D Fa(2) 2(2)ds (6)

where Z is a Gaussian white noise and 7, is a bivariate Gaussian density with parameters
¥ (s) indexed by s. A prior is imposed on {¢(s) : s € D} in order to model a smoothly
varying change in v(s) across D, and inference is carried out using Markov chain Monte
Carlo. A similar construction is used in Hirst et al. (2002) in an elaborate space-time
model for air pollution in Europe. Fuentes & Smith (2001) consider a model

Y(z)= /D/?;(:c — S)Zi(s)(x)ds (7)

where the smoothing kernel k is not location dependent but where non-stationarity is
induced by the index function 4(s) which maps s into an index set I of a family of stationary
processes Z;, i € I with different covariance functions c;.



In Higdon et al. (1999) and Fuentes & Smith (2001) the smoothing kernels and fields
Z and Z;, i € I, are not of intrinsic interest but merely building blocks for construction of
flexible spatial models. This is in contrast to our situation where both Z and k4 are models
of physical realities, i.e. the underlying yield and the smoothing induced by the combine
harvester, and where a primary goal is the prediction of Z. Higdon et al. (1999) and Fuentes
& Smith (2001) use a Bayesian approach for estimation and prediction. This provides
a coherent framework for taking into account parameter uncertainty in the prediction
variances but for computational reasons the likelihood of the data given the unknown
parameters must be easy to evaluate. In Higdon et al. (1999) the likelihood is available
in closed form while Fuentes & Smith (2001) evaluate the covariance matrix of the data
using Monte Carlo integration. In our case the computation of the likelihood is very time-
consuming due to the large number of observations. Hence Bayesian inference implemented
with Markov chain Monte Carlo is not practical. As in our paper, Hirst et al. (2002)
compute maximum likelihood estimates by numerical maximization of the likelihood.

In the above discussion we have considered smoothed spatial processes with a continuous
index set. In many applications of spatial statistics so-called Gaussian Markov random
fields are used partly for computational reasons, see the seminal reference Besag (1974),
and Rue (2001) who deals with efficient computation for Gaussian Markov random fields.
A Gaussian Markov random field is defined on a discrete grid which could e.g. be a subset
of Z2. In our situation, however, the introduction of a grid seems rather artificial since the
yield values are not restricted to a discrete set of locations.

4 Non-parametric estimation of K, and K

Denote by }7(551), .. .,Y/(ajn) approximately zero-mean residual yield meter observations
obtained as in Section 2 by subtracting empirical treatment means. Using the symmetry
properties of K discussed in Remark 2 we obtain the non-parametric estimate

z%(](h):'Nth' S V@)V (), heR
(

1,5)€Non

where |Ngp| denotes the cardinality of the set
Non = {(4,7) : d(z:) = d(;), ||z — 2 = h|| < d or [lz; — x5 = (h1, =ho)|| < ¢}

and ¢ > 0 is a smoothing parameter. Note that K,((0,0)) is an estimate of Ko((0,0))+o2.

Similarly for K7, .
Bil) =51 >, V@)V

(4,5)EN1R

where

Nup = {(5,7) » d(z;) = WE, d(z;) = EW, |[z; —2; = h| < ¢ or [[z; — 25 — (1, —ho)|| < ¢}



The smoothing parameter ¢ > 0 determines the number of pairs of observations used for
the calculation of Ky(h) and K;(h).

Figure 6 shows Ko and K computed using the residual yield meter values in Section 2
and with ¢ = 10 (this value was chosen subjectively in order to get a reasonable degree
of smoothness in the estimates). Due to the smoothing done by the combine harvester,
Ky and K, decrease much slower in the east-west direction (parallel to driving tracks)
than in the north-south direction (perpendicular to driving tracks). The asymmetry in
the east-west direction in the lower left plot may also be ascribed to the smoothing effect,
cf. Figure 5. Note that we plot K;((h1,5)) and not Ky((hy,0)), hy = —100,—95,...,100
m, due to lack of pairs of observations with same second spatial coordinate and, at the
same time, different driving directions. For the same reason K7((0,0)) is not plotted. The
dotted curves are so-called envelopes used for model assessment in Section 7.3 where we
also briefly comment on the bias of the non-parametric estimates.
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Figure 6: Plots of empirical directional covariograms (+’s) for directions east-west (left
plots) and north-south (right plots). Upper plots: Ky((hy,0)) and Ko((0, hy)) for hy, hy =
0,5,...,100 m. Lower left plot: K1((hy,5)) hy = —100,—=95,...,100 m. Lower right plot:
K1((0,hs)), hy = 5,...,100 m. The dotted curves are envelopes used for model assessment
in Section 7.3.
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5 Parameter estimation

The parameters in the model for yield meter data developed in Section 3 are estimated using
maximum likelihood. The sample sizes of yield meter datasets are very large compared
with typical datasets in spatial statistics. In the Veddelev data, for example, the sample
size is n = 3360 and this makes maximum likelihood estimation for the entire dataset
impractical. We therefore consider the option of using only a subset of the yield meter
data.

For sampling locations 1, . .., x, we let y = (y1, ..., y,) denote the observed realization
of the yield meter process Y% = (Y (z1),...,Y (x,)). Recalling (3), the covariance function
of Y may be written as 72k with

k(x, %) = Lg@=a@iko(r — T) + Law)=we,a@-ewyhki (¢ — I)
+ Lig)—ew d@)=wey k1 (T — 2) + Lizepyor, o, € R? (8)

where ky = Ko/7¢, ki = Ky/7¢, and o} = o2/72. The function k is parametrized by
P=1/rE1=2,...,L, a=(ai,...,ar), and the parameters p, A of the impulse response
function. The covariance matrix of Y°™ is denoted Kye»s. The mean function m(z) is
modelled by a linear regression m(z) = f(z)'3, cf. Remark 1.

For a subset A C {zy,...x,} we let y4 denote the observed realization of the subsam-
pled process Y™ = (Y (2))zea. Let ¥ be the matrix with entries k(x, ), ,7 € A. The

covariance matrix of Y§* is then Kyobs = 72(X+0?I). The maximum likelihood estimates

of 3, 72, and 0 = (\, u, 72, ..., 7+, @, 03) maximize the log likelihood function given by

o

lA(ﬁanaGEZJA) = 9

1 1 _
0g T — 5 log| Kyevs | — 2—7_2(yA - FAﬁ)/KYles (ya— FaB) (9)
1

where Fy is the matrix with rows given by f (x), x € A.

For fixed values of #, the values of 3 and 77 that maximize (9) are available in closed form
(see e.g. Ripley, 1988). Maximization with respect to § must be done iteratively. For every
new value of # the entries of the matrix K ygbs must be calculated by numerical integration
followed by inversion of Kygbs. In an iterative optimization procedure these computations
are repeated many times and optimization becomes infeasible if the cardinality of A is
large.

Experiments using an approximate likelihood (Vecchia, 1988) based on certain local
neighbourhoods were not successful due to problems with choosing appropriate neighbour-
hood sizes.

In general when data are given by a convolution of an underlying spatially correlated
random field one may expect problems with identifiability since a strong correlation in
the data may be due to either strong correlation in the underlying field or high degree of
smoothing in the convolution. It would then be helpful to collect a moderate sample of
direct observations of the underlying field in order to enable identification of correlation
parameters and smoothing parameters in the convolution kernel. However, in our case
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the correlation structure of the yield is isotropic while the highly anisotropic smoothing
essentially only takes place in the east-west direction. Pairs of observations in the north-
south direction therefore contribute information on the correlation parameters aq, ..., ay,
(see also Figure 6). The likelihood function is based on pairs of observations both in
the east-west and north-south direction and identification of the correlation parameters
(v, ..., ar) and the smoothing parameters (u, A) is thus possible.

6 Deconvolution

For applications in precision farming it is of interest to map the spatially varying residual
yield components §;, [ = 1,..., L, of Z, see Section 3.2. We therefore consider prediction
of 6f = (6;(u1),...,0(uy)) where uy, ..., u, is a grid of locations covering the field. Let
Cs; be the covariance matrix for ¢/, and let Kyovss; be the n x m matrix of covariances
Cov (Y (z;),8(uy)), i = 1,...,n, j = 1,...,m. If d(z;) = WE then Cov(Y (z;), 8 (u;)) =
Kgl(l‘i — Uj) with

Ko(h) = 72 / s ()p(lh — ull far)du, h € R, (10)

and if d(z) = EW then Cov(Y (z;),d(u;)) = Ko(u; — x;). The function Ky is computed
by factorizing the integral in (10) and applying numerical integration to one of the terms.
The minimum mean square error predictor of d; is given by the conditional expectation

* b -1 b
E[0/ 1Y =yl = Kyons Kyon (y —E[Y]) (11)
and the prediction covariance matrix is given by the conditional covariance
~1
C(;Nyobs == Cgl* - K/YObS(sZ( KyobsKYObsél*- (12)

The equations (11) and (12) are standard results, see e.g. Mardia et al. (1979).
The conditional expectation and variances of ¢; are computed in Section 7.4 using
Cholesky factorization

Kyobs — Lyobs LIYobs (13)

where Lyobs is lower triangular.
To clarify the connection to regularization note that the conditional mean maximizes
the log conditional density of §;|Y°P = y. By Bayes theorem the log conditional density

log f(d|y) is

]' oDs | §* * — obs| £* * 1 * — *
_5(19 —E[Y”|o) = dl])/Kyt}bswl*:dl*(y —E[Y"lo) = dj]) - §(dl)lcal*1dl +const  (14)

(using obvious notation). In (14) the first term measures fit of the maximizing value of dj
and the second term containing the positive definite matrix C}l acts as a regularization
term which ensures a suitable smoothness of the maximizer. Our situation differs from

12



typical regularization problems since the covariance function of d; plays a role both in the
‘regularization term’ and in the ‘observational model” of Y°"|§. For example,

E[Y (x)|d/] = / 2 Ka)(z — s)(m(s) + csl/C’%lél*)ds,

RQ

Ka@)(x — 8)E[Z(s)|d;]ds = /

R

t=1,...,n, where ¢y = (COV(Z(S)vél(Uj)));-

7 Results for Veddelev yield meter data

For the Veddelev data we consider the model in Section 3.2 with either L = 1 or L = 2
components in the residual yield process. This reflects a pragmatic approach where first a
simple model is fitted and possible deficiencies of the fitted model leads to consideration
of a more complex model. In the following we refer to the models with . =1 and L = 2
as Model 1 and Model 2, respectively.

The mean function m is assumed to have four levels corresponding to the four nitrogen
treatments so that f(z) = (fi(z),..., fa(z)) where fi(z) =1, =1,...,4, if the location
x received the ith nitrogen treatment and zero otherwise. The width b of the cutterbar of
the combine harvester is known and equal to 3.6576 m (12 ft). In the registration of the
Veddelev data, observations at both ends of the driving tracks were excluded to avoid edge-
effects and we therefore, as in Section 3, ignore the edge-effects. The software for parameter
estimation was programmed in Fortran using freely available software for numerical linear
algebra (Anderson et al., 1999), optimization (Fox et al., 1978) and integration (Piessens
et al., 1983).

7.1 Parameter estimates

We base parameter estimation on observations for a random subsample A of size 840 of
the 3360 sampling locations. Both for Model 1 and Model 2 the optimization of the log
likelihood moves towards high values of © whereby an essentially flat likelihood considered
as a function of u is obtained, see Section 3.1. We therefore replace the IG(u, \) impulse
response function with the inverted Gamma density depending only on A. In order to assess
whether a maximum is reached we inspect profile likelihoods for all pairs of parameters
(not shown). The parameter estimates and the values of the maximized log likelihoods
multiplied by two are given in Table 1.

Table 1: Maximum likelihood estimates for Models 1 and 2 with respectively one or two
components in the residual yield process. Last column contains the log likelihood multiplied
by two.

Model I} A 7 a1 Qo o2 2logLL

1 (3.89,5.11,5.42,5.55) 4.31 3.40 4.00 - - 0.008 -334.2
2 (3.76,5.04,5.36,5.47) 327 4.03 1.63 0.29 31.74 4-1075 -264.9
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The likelihood clearly favours Model 2 with two residual components and this is further
supported by the model assessment in Section 7.3. The estimate of the correlation param-
eter o; under Model 1 lies between the estimates of o and as for Model 2. For Model 2
the first component 9, is practically a white noise with a high variance - this may explain
why the estimate of the noise variance o becomes very small for Model 2 (for numerical
reasons we fix o} at 107% whereby o2 becomes 4 - 107%). The process 8, exhibits longer
range correlation and has a smaller variance. However, d, exhibits substantial variation
compared with the mean function of the yield since the estimated standard deviation 7
of d amounts to 10 % of the highest level of the mean function. The estimated variance
of Y is respectively 0.18 and 0.20 for Model 1 and Model 2 and is much smaller than the
estimated variance for the yield process Z. This is to be expected since the smoothing in
the combine harvester reduces the variance.

A plot of the inverted Gamma impulse response function using the estimate of A ob-
tained with Model 2 is shown in Figure 4 together with impulse response functions obtained
in Pringle et al. (1999) and Whelan & McBratney (2002). Pringle et al. (1999) considered
data from a barley field and their impulse response function is therefore to some extent
comparable with ours. The pronounced delay effect for the impulse response function from
Pringle et al. (1999) does not appear in our case. This is due to an automatic correction
for the delay effect built into the data logging equipment of the combine harvester used at
the Veddelev field. Whelan & McBratney (2002) considered the crop sorghum, which is
very different from barley.

7.2 Parametric bootstrap

To get an impression of the distribution of the parameter estimates under Model 2 we use
a parametric bootstrap (Efron & Tibshirani, 1993) as follows: 40 yield meter data sets
are simulated from the fitted Model 2 using the Cholesky factorization (13) of the fitted
covariance matrix. For each of the simulated datasets, parameter estimates are obtained
from a random subsample of size 840 (following the procedure for the original data). We
use a moderate number of simulations due to the computational burden of maximizing the
log likelihood for each simulated dataset. Table 2 shows medians, means, and standard
deviations computed from the 40 sets of bootstrap covariance parameter estimates.

Table 2: Medians, means, and standard deviations computed from 40 sets of bootstrap
covariance parameter estimates.
A 7 o T3 Qo o2
Median ~ 3.25 3.83 1.63 0.29 31.74 4-107°
Mean 3.26 3.97 1.65 0.29 3256 0.0003
Std. dev. 0.14 0.86 0.18 0.06 3.55 0.0007

The bootstrap parameter means indicate that the parameter estimates are close to being
unbiased except for the estimate of o2 which has a very skew distribution. All parameters
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except A have rather large bootstrap standard deviations relative to the bootstrap means.
Concerning the implication of variance parameter uncertainty on prediction results one may
note that the prediction (11) only depends on the relative magnitudes 772/72, 1 =1,...,L
of the variances 72,...,77. The bootstrap mean/standard deviation for the estimate of
72 = 7'2 2 /72 1s 0.07/0. 01 The prediction covariance matrix (12), however, depends directly

on 7.

)

7.3 Model assessment

The model assessment in this section is based on the non-parametric estimates Ky and K,
(Section 4) and residuals computed from the full data set with n = 3360 observations.

The dotted and dashed curves in Figure 6 are envelopes obtained using a parametric
bootstrap under Model 1: the envelopes are point-wise minima and maxima for Ko and K;
computed from 39 yield meter datasets simulated under the fitted Model 1. If the observed
yield meter data were generated under the fitted model, then for each value of hy; and hso,
there is 95% probability that the pointwise estimate from the observed data falls inside
the corresponding envelopes. The envelopes are too narrow since parameter uncertainty is
not taken into account. Still, the fit of Model 1 is questionable since in the north-south
direction one can observe a large discrepancy between Ky and K; computed from the data
and their sampling distribution under the fitted model. Figure 7 in contrast shows a good
agreement between Ky and K; computed from the data and their sampling distribution
under the fitted Model 2. In the sequel we exclusively consider Model 2.

Comparison of the theoretical values of Ky and K; with the Monte Carlo mean of the
non-parametric estimates computed from 100 simulations of the fitted Model 2 (see solid
and dashed curves in Figure 7) indicates a small bias downwards of the non-parametric
estimates. This bias is due to that Y (z1),...,Y (z,) (see Section 4) are obtained by
subtracting the empirical treatment means instead of the true unknown treatment means.
The bias is not an issue when f(o and K 1 are used for model assessment.

Residuals are given by r; = y; — f (x;) B,i=1,...,n, with 3 equal to the maximum
likelihood estimate. The transformed residuals (71, ...,7,) = Ly (r1,...,7,)" obtained

using the Cholesky factorization (13) should then resemble a sample of n independent
standard normal random variables. Figure 8 shows a histogram of the residuals r; and a
quantile-quantile plot of the transformed residuals 7; computed under the fitted Model 2
(in the right plot six transformed residuals with large negative values are omitted). The
univariate distribution of the transformed residuals appears to be close to a standard
normal.

7.4 Deconvolution

Under the fitted Model 2 the component §; of the yield process is almost a white noise pro-
cess and exhibits high frequency variation which is not manageable with current precision
farming technology. We therefore restrict attention to the slowly varying component o,
which is predicted at 6958 locations uq, ..., uggss on a b m x 5 m grid of dimension 98 x 71
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Figure 7: Plot of empirical directional covariograms as in Figure 6 but with envelopes
calculated from simulations under the fitted Model 2. The solid line is the theoretical
value of Ky and K under the fitted Model 2. The dashed line is the Monte Carlo mean of
the non-parametric estimates computed from 100 simulations.

covering the Veddelev field. Figure 9 shows the prediction of ;5 obtained as described in
Section 6 and replacing the unknown parameters with the maximum likelihood estimates
for Model 2. The predicted values of d, range between —1.47 and 1.36. The variation is
thus substantial compared with the fitted mean function of the yield Y and there is scope
for using methods of precision farming to e.g. target fertilizer application at areas with low
predicted values of d5.

Incidentally, the kernel smoothed yield (Figure 2) obtained with a subjectively chosen
band width is visually rather similar to the prediction in Figure 9 (note that the kernel
smoother used for producing Figure 2 only provides values for locations closer than 15 meter
to the field). However, the kernel smoothing does not provide the required deconvolution.
The prediction in Figure 9 is furthermore accompanied by prediction variances of dz(u;),
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Figure 8: Histogram of residuals 7; (left) and quantile plot of transformed residuals 7;
(right, straight line is the identity) computed under fitted Model 2.
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Figure 9: Predicted 65. Light gray scales corresponds to low predicted values (see legend
in plot). White line shows the outline of the field.

j=1,...,6958 (not shown) which vary from a minimal value of 0.01 up to 0.13.
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8 Discussion

For computational reasons we restrict attention to the Gaussian covariance function and
a sum of Gaussian covariance functions for which the corresponding random fields are
infinitely often mean-square differentiable (Stein, 1999). It is of interest to consider alter-
natives like spherical or Matérn covariance functions which allow more rough random field
realisations. However, for these covariance functions two-dimensional numerical integra-
tion is required and this at present leads to unacceptable computing times. Concerning the
covariance structure, it could also be relevant to allow for variance heterogeneity between
the different treatments.

Edge-effects are ignored in our computations. Considering the heavy tail of the fitted
impulse response function this may not be wise. In principle it is straightforward to
calculate the marginal distribution for observations near the edges of the field but in
practice a lot of extra programming is required. In our analysis we have also ignored the
fact that the yield meter observations do not fall on perfectly straight and parallel lines.
The deviations from straight lines are mainly due to GPS measurement error so it might
be helpful to rectify the data by regressing the sampling locations onto straight lines.

The implications of using a particular parametric form of the impulse response function
deserves further investigation. A too heavy tail dictated by the parametric model may e.g.
result in an amplification of the estimated yield variance and it would be interesting to
consider also an impulse response function with bounded support.

We have focused on using the developed statistical model for yield mapping. Another
application of great interest is statistical analysis of experimental field trials where data
are obtained using a yield meter. For the Veddelev field for example, the design with the
long treatment plots is not used to ensure homogeneous soil properties within plots but
is chosen to facilitate data collection using the combine harvester. Since the yield meter
data has a non-standard covariance structure, classical analysis of variance does not seem
appropriate. It would be interesting to consider alternative statistical procedures based on
our approach of modelling the yield meter data.
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A Computation of yield meter process covariance func-
tion using spectral theory

By Bochners theorem a covariance function ¢ has a representation as a Fourier transform
of a finite measure F on R2. In the following we restrict attention to the case where F has
a density I' so that

c(||r]) = /R2 exp(iw'h)(w)dw, h € R?, (15)

where ’ denotes transpose. Note that I'(w) = [exp(—iw'h)c(||h|])dh/(47?), w € R?, only
depends on ||w]|.
Using the spectral representation (15) and the product form (1) of kwg we obtain

Ky(h) :/ |71 (w1)]? sinc? (wqb/2)T (W) exp(iw'h)dw
R2
where sinc(z) = sin(x)/x and &, denotes the Fourier transform of kywg. Similarly,
Ki(h) = / () sine?(wsb/2)T(w) exp(in/h)duw (16)
R2

where '~ denotes complex conjugation.
The Fourier transform of kiwg, i.e. the characteristic function of an inverse Gaussian

IG(, \) distributed variable, is given by &1 (w1) = exp (A(1—+/1 — 2iwip2/A) /1) (Johnson
et al., 1994). Using the identity

Vo +izo = [((\/ 2 + 23+ zl)/2)1/2 +iza/ (221 + 24/ 23 + zg)l/Q]

straightforward calculations show that

|1 (@) = golwr) and 7oy (wn) = golwn) exp(—ib(wr))

where go, a, and b are given by

go(wr) = exp(2A/p) exp(—a(wn)),  awr) = 2A((1/4+ (i /N2 +1/2)

and

1/2

/p, (A7)

b(wr) = 2xsign(wn) ((1/4+ (i /N)Y2 = 1/2)" /. (18)

Since a and sinc? are even and I is isotropic we obtain
Ko(h) = 4/ sinc? (wqb/2) COS(WQhQ)/ ['(w)go(wr) cos(wyhy)dwydw,. (19)
0 0
Equation (16) can be rewritten as

Ki(h) = /R sinc? (wqb/2) cos(wghQ)/Rl"(w)go(wl)exp(iwlhl — ib(wy))dwidws.
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Expanding the integrand of the inner integral using

exp(iwyhy — ib(wy)) = cos(wihy) cos(b(wr)) — i cos(wihy) sin(b(ws))+
isin(wy ) cos(b(wr)) + sin(wihy) sin(b(wy))

we observe that the imaginary part of that integral vanishes. Further simplification, using
one of the addition formulas for the trigonometric functions, shows that the integrand
simplifies to I'(w)go(wy) cos (w1h1 — b(wl)). Thus, we obtain

Ki(h) = 4/000 sinc? (wab/2) cos(wahs) /000 I'(w)go(wr) cos(wihy — b(wr))dwidws.  (20)

B Calculations for Gaussian covariance function

In general the two-dimensional integrals (19) and (20) must be evaluated numerically.
However, for a Gaussian covariance function c(u) = o%exp(—u?/a) some simplifications
are possible. In this case the spectral density is given by

['(w) = (47)to?a? exp(—ozZ(wf + w%)/él), w € R2.

The integrals (19) and (20) can thus be factorized into the products

K;(h) = / sinc? (wab/2) cos(wahs) exp(—a’w3 /4)dw,
0
/ go(w1) cos(wihy — 1j1yb(wr)) exp(—a’wi/4)dw, j =0,1. (21)
0
By noting that sin?(wsb/2) cos(wahg) = 1/2 cos(waha) —1/4 cos(wa(b—ha))—1/4 cos(wy(b+

h)), we see that the first integral in (21) may be evaluated as a linear combination of
integrals of the form

4/b2/ wy 2cos(wyz) exp(—a’ws /4)dw, (22)
0

where z takes the form hg, b — hy or b+ hy. To evaluate (22) note that the integral may be
differentiated with respect to z by differentiating under the integral sign since the resulting
integrand is absolutely integrable. By Gradshteyn & Ryzhik (1994, 3.952.6)

/OOO wy 'sin(wyz) exp(—a’ws /4)dwy = g erf(z/a). (23)

The solution to (22) is found by integrating the right hand side of (23) with respect to z.
Thus, by Gradshteyn & Ryzhik (1994, 5.41)

4/b2/ wy 2cos(wyz) exp(—a’w? /4)dwy = —2b2 (ﬂl/ga exp(—2°/a”) + mzerf(z/a)) + co
0
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where erf(z) = 2r7 /2 [" exp(—t?)dt is the error function and ¢, is a constant. Collecting
the terms, the first integral in (21) is simplified to

/ sinc?(wab/2) exp(—a’w} /4) cos(waha)dws =
0

1/2

ngza (exp(—(b — h)*/a®) + exp(—(b + ho)?/a®) — QQXp(_hg/QQ))+
Qng <(b — ha)erf ((b— ho)/a) + (b+ ho) erf((b+ ho)/a) — 2hs erf(hQ/a)> (24)

since the contributions from the constant ¢ cancel each other. The second integral in (21)
can not be simplified because of the complicated form of the integrand.

23



