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Mean and covariances of counts for spatial point process
Point process X: random point pattern.

For A subset of the plane, count N(A) is number of points in A.
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= Poisson proc. covariance + extra term due to corr.
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Campbell formulae

N(A) = 1[u € Al
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Hence by moment formulae, for f function on R? or R? x R?:
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E Z f(u,v) = /R2XR2 f(u,v)p(u)p(v)g(u, v)dudv
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Starting point for unbiased estimating functions !



Regression model for intensity function

Focus on estimation of parameter in regression model for intensity
function.

E.g. log-linear model

where



First-order estimating equations

Campbell = unbiased first-order estimating function

Z fa(u) — /W fa(u)pg(u)du

ueXnw

Choice
fo(u) = log pa(u)

leads to composite Iikellhood/P0|sson likelihood

Z pﬁ—EZ;—/Wp/ﬁ(u)du
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This is optimal choice for Poisson process (MLE) but what is
optimal in the clustered case 7



Asymptotic results - first order estimating function

Let sensitivity
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Under appropriate mixing conditions,

B\f ~ N(/Bv Vf/|W|)

where
Ve =S15¢S !



Optimal first-order estimating equation
Optimal choice of f3: smallest asymptotic variance

Ve =S 15eSt

Optimal choice of f3 is solution of Fredholm equation

d
f3(u) +/ t(u, v)fg(v)du = — log pg(u), uve W,
w dp
where integral equation kernel is

t(u,v) = p(v)lg(u,v) = 1]

Note: optimal fg depends on pair correlation !



Numerical approximation and quasi-likelihood

Approximate solution of Fredholm

equation using numerical quadrature:

Riemann sum dividing W into cells C;

with representative points u;.




Numerical approximation and quasi-likelihood
Approximate solution of Fredholm T EWAR
equation using numerical quadrature:
Riemann sum dividing W into cells C;
with representative points u;.

Resulting estimating function is quasi-likelihood
(N—=p)V™'D
based on
N = (Ni,...,Ny), N;count of points in C;.



Numerical approximation and quasi-likelihood
Approximate solution of Fredholm T ADRR
equation using numerical quadrature:
Riemann sum dividing W into cells C;
with representative points u;.

Resulting estimating function is quasi-likelihood
(N—=p)V™'D
based on
N = (Ni,...,Ny), N;count of points in C;.

1 mean of N:
pi = EN; = p(u;)|Gi| and D = [du(u;)/dBi],
V' covariance of N:

Vij = Cov[N;, N;j] = pilli = j] + pipjlg(ui, uj) — 1]
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Practical implementation: IGLS

Pair correlation function inside V' estimated by e.g. minimum
contrast.

Solve
(N —pu(B)V(B)*D(B) =0

using iterative generalized least squares:

(B =M D) TV (8 D(N) = (N—p(B"))V(8D)D(8")

One issue: use fine discretization (large m) = V highdimensional
matrix - e.g. V 10000 x 10000.

Use tapering and sparse matrix Cholesky from Matrix library in R.

Covariance matrix for j:

Starer DT Vg ket VWia e DSiaters Staper = DT Vg2, D

taper taper taper taper> taper
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Simulation study

Consider variance of /3 obtained from either composite likelihood or
quasi-likelihood.

Reduction in variance for quasi-likelihood relative to composite
likelihood: 10% to 65%.

Large reductions when strong clustering and strong inhomogeneity.
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Example: three tree species with different modes of seed
dispersal:

Acalypha Diversifolia Loncocharpus Heptaphyllus

s

Capparis Frondosa

Potassium content in soil.

Covariates pH, elevation, gradient, potassium,...
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Fitted pair correlation functions g(-)

90 -1

Acalypha: Cauchy.

Loncocharpus, Capparis: Matérn.
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Results with composite likelihood and quasi-likelihood

species

~

g

Acalypha

CL

—6.91 + 0.021dem + 0.0047K
(77.34%,9.77%,1.153*) x 1073

QL

—6.90 + 0.016dem + 0.0047K
(77.09%,9.54,1.133*) x 1073

Loncocharpus

CL

—6.49 — 0.021Nmin — 0.11P — 0.59pH — 0.11twi
(81.06%,7.45*,58.78,282.89*,53.19%) x 1073

QL

—6.49 — 0.023Nmin — 0.12P — 0.55pH — 0.084twi
(80.15%,6.95*,55.23*, 266.10*,45.47) x 1073

Capparis

CL

—5.07 + 0.028dem — 1.10grad + 0.0043K
(79.54%,9.98*,1200.36,1.16*) x 1073

QL

—b5.10 + 0.019dem — 2.50grad + 0.0039K
(77.77%,8.86*,935.02*,1.02%) x 1073

Estimated standard errors always smallest for QL. Regression
parameters similar except for grad, Capparis.



Thanks for your attention
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