Unbiased estimating functions for spatial point processes

Rasmus Waagepetersen
Department of Mathematical Sciences
Aalborg University

based on joint work with

Adrian Baddeley, Jean-Francois Coeurjolly, Yongtao Guan, Abdollah Jalilian and Ege Rubak

Outline

- data examples
- GNZ and Campbell formulae
- Gibbs and Cox spatial point processes
- pseudo-likelihood and composite likelihood
- Monte Carlo approximations and relation to logistic regression
- examples of applications
- quasi-likelihood

Aim: discuss closely related estimating functions for two very distinct classes of point processes.

Mucous membrane cells

Centres of cells in mucous membrane:

Repulsion due to physical extent of cells

Inhomogeneity - lower intensity in upper part

Bivariate - two types of cells

Same type of inhomogeneity for two types ?

Data example: Capparis Frondosa

Elevation

- observation window W= 1000 m \times 500 m
- seed dispersal⇒ clustering
- environment ⇒ inhomogeneity

Potassium content in soil.

Objective: quantify dependence on environmental variables.

Intensity and conditional intensity

Point process X: random point pattern.

Assume observed in bounded window $W \subset \mathbb{R}^2$. u location in W.

Intensity $\lambda(u)$: for infinitesimal region A and $u \in A$,

$$P(X \text{ point in } A) = \lambda(u)|A|$$

Conditional intensity $\lambda(u, \mathbf{X})$:

$$P(X \text{ has a point in } A|X \setminus A) = \lambda(u,X)|A|$$

Note

$$P(X \text{ point in } A) = \mathbb{E}P(X \text{ point in } A|X \setminus A) \Rightarrow \lambda(u) = \mathbb{E}\lambda(u,X)$$

GNZ and Campbell formulae

Georgii-Nguyen-Zessin formula:

$$\mathbb{E}\sum_{u\in\mathbf{X}}f(u,\mathbf{X}\setminus u)=\int_{W}\mathbb{E}[f(u,\mathbf{X})\lambda(u,\mathbf{X})]\mathrm{d}u$$

for non-negative functions f.

Campbell formula:

$$\mathbb{E}\sum_{u\in\mathbf{X}}f(u)=\int_{W}f(u)\lambda(u)\mathrm{d}u$$

Note: special case of GNZ since $\lambda(u) = \mathbb{E}\lambda(u, \mathbf{X})$.

Gibbs point processes

Gibbs point processes specified by explicit model for the conditional intensity.

Strauss:

$$\lambda_{\theta}(u, \mathbf{X}) = \exp[\beta + \psi n_{R}(u, \mathbf{X})], \quad \beta > 0, \ \psi \leq 0$$

 $n_R(u, \mathbf{X})$: number of neighboring points within distance R from u.

Model for repulsion (typically the case for Gibbs).

Inhomogeneous: Z(u) covariate at $u \in \mathbb{R}^2$.

$$\lambda_{\theta}(u, \mathbf{X}) = \exp[\beta Z(u)^{\mathsf{T}} + \psi n_{R}(u, \mathbf{X})]$$

Cox processes

X Poisson process with intensity function $\lambda(\cdot)$:

total number of points Poisson and given this, points *iid* with density $\propto \lambda(u)$.

X is a *Cox process* driven by the *random* intensity function Λ if, conditional on $\Lambda = \lambda$, **X** is a Poisson process with intensity function λ .

Example: log Gaussian Cox process

log Gaussian Cox process ("point process GLMM")

$$\Lambda(u) = \exp[\beta Z(u)^{\mathsf{T}} + Y(u)]$$

where $\{Y(u)\}$ Gaussian random field:

Y(u): random clustering (at peaks of Y).

Z(u): deterministic variation.

For Gibbs point process $\lambda(u, \mathbf{X})$ is given but $\lambda(u) = \mathbb{E}\lambda(u, \mathbf{X})$ hard.

For Cox process, $\lambda(u, \mathbf{X})$ hard but since $\mathbf{X}|\Lambda$ is Poisson,

$$\lambda(u) = \mathbb{E}\Lambda(u).$$

Often easy to evaluate for Cox processes.

E.g. $\log \Lambda(u) \sim N(\beta Z(u)^T, \sigma^2)$ [log Gaussian Cox process]:

$$\lambda(u) = \exp(\beta Z(u)^{\mathsf{T}} + \sigma^2/2)$$

Summary

	$\lambda(u \mathbf{X})$	$\lambda(u)$	GNZ	Campbell	interaction
Gibbs	yes	no	yes	no	repulsive
Cox	no	yes	no	yes	clustering

Estimating function

Estimating function: $e(\theta)$ [$e(\theta, X)$] function of θ and data X.

Parameter estimate $\hat{\theta}$ solution of

$$e(\theta) = 0$$

 $\hat{\theta}$ unbiased $\mathbb{E}\hat{\theta} = \theta^*$ if $e(\theta)$ unbiased $\mathbb{E}e(\theta^*) = 0$ (θ^* true value).

Estimating function

Estimating function: $e(\theta)$ [$e(\theta, X)$] function of θ and data X.

Parameter estimate $\hat{\theta}$ solution of

$$e(\theta) = 0$$

 $\hat{\theta}$ unbiased $\mathbb{E}\hat{\theta} = \theta^*$ if $e(\theta)$ unbiased $\mathbb{E}e(\theta^*) = 0$ (θ^* true value).

$$\mathbb{V}\mathrm{ar}\hat{\theta} = S^{-1}\Sigma S^{-1} \quad \Sigma = \mathbb{V}\mathrm{ar}e(\theta^*)$$

with sensitivity

$$S = -\mathbb{E}\left[\frac{\mathrm{d}}{\mathrm{d}\theta}e(\theta)\right]$$

minus expected derivative of $e(\theta)$

How do we construct unbiased estimating functions involving X and θ ?

Composite and pseudo-likelihood

Disjoint subdivision $W = \bigcup_{i=1}^{m} C_i$ in 'cells' C_i .

 $u_i \in C_i$ 'center' point.

Random indicator variables:

$$Y_i = 1[X \text{ has a point in } C_i]$$

(presence/absence of points in C_i).

	_	_	_					
		١.		١.	l°			۰ ا
0	۰۰,	_	۰		0		00,	%
	ļ		١ ٠		ľ	۰	*	
						- 6	⊢• ⊷	•
		00	١٠,	r°		• '	Ī	ľ
				-			-	
. 8			۰		١.	١.		1
	۰				l °	l °		
	۰۰		۰					•
		۰			•		١.	
	_	-	_	_	0.0		Ť	-
			۰ ،					
		-				9.0		_
۰			1			*8		
	۰.		١.		ľ	1 -		
	80		۰	۰ ه	₿			·
	۰ ×		l		L			۰.
			<u> </u>	-	Ī	_	_	Ľ
°		. 8		۰,	8			1
			۰				۰	

Composite and pseudo-likelihood

Disjoint subdivision $W = \bigcup_{i=1}^{m} C_i$ in 'cells' C_i .

 $u_i \in C_i$ 'center' point.

Random indicator variables:

$$Y_i = 1[X \text{ has a point in } C_i]$$

(presence/absence of points in C_i).

$$P(Y_i = 1) = |C_i|\lambda_{\theta}(u_i)$$
 and $P(Y_i = 1|\mathbf{X} \setminus C_i) = |C_i|\lambda_{\theta}(u_i, \mathbf{X})$

Idea: form composite likelihoods based on Y_i , e.g.

$$\prod_{i} P(Y_i = 1)^{Y_i} (1 - P(Y_i = 1))^{1 - Y_i}$$

Consider limit when $|C_i| \rightarrow 0$.

Log composite likelihood (in fact log likelihood for Poisson):

$$\sum_{u \in \mathbf{X}} \log \lambda_{\theta}(u) - \int_{W} \lambda_{\theta}(u) du$$

Log pseudo-likelihood (Besag, 1977)

$$\sum_{u \in \mathbf{X}} \log \lambda_{\theta}(u, \mathbf{X} \backslash u) - \int_{W} \lambda_{\theta}(u, \mathbf{X}) \mathrm{d}u$$

Log composite likelihood (in fact log likelihood for Poisson):

$$\sum_{u \in \mathbf{X}} \log \lambda_{\theta}(u) - \int_{W} \lambda_{\theta}(u) du$$

Log pseudo-likelihood (Besag, 1977)

$$\sum_{u \in \mathbf{X}} \log \lambda_{\theta}(u, \mathbf{X} \setminus u) - \int_{W} \lambda_{\theta}(u, \mathbf{X}) du$$

Scores:

$$\sum_{u \in \mathbf{X}} \frac{\lambda_{\theta}'(u)}{\lambda_{\theta}(u)} - \int_{W} \lambda_{\theta}'(u) \mathrm{d}u \quad \text{and} \quad \sum_{u \in \mathbf{X}} \frac{\lambda_{\theta}'(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u)} - \int_{W} \lambda_{\theta}'(u, \mathbf{X}) \mathrm{d}u$$

unbiased estimating functions by

Campbell/GNZ.

Issue:

integrals

$$\int_{W} \lambda_{\theta}'(u) \mathrm{d}u$$
 and $\int_{W} \lambda_{\theta}'(u, \mathbf{X}) \mathrm{d}u$

often not explicitly computable.

Numerical quadrature may introduce bias.

Monte Carlo approximation

Let D 'quadrature/dummy' point process of intensity $\rho(\cdot)$ and independent of X.

By GNZ

$$\mathbb{E} \int_{W} \lambda'(u, \mathbf{X}) du = \mathbb{E} \sum_{u \in \mathbf{X} \cup \mathbf{D}} \frac{\lambda'(u, \mathbf{X})}{\lambda(u, \mathbf{X}) + \rho(u)}$$

By Campbell

$$\int_{W} \lambda'(u) du = \mathbb{E} \sum_{u \in \mathbf{X} \cup \mathbf{D}} \frac{\lambda'(u)}{\lambda(u) + \rho(u)}$$

Idea: replace integrals in pseudo- or composite likelihood with unbiased estimates using **D**.

CENTRE FOR STOCHASTIC GEOMETRY AND ADVANCED BIOIMAGING

Dummy point process

Should be easy to simulate and mathematically tractable.

Stratified:

Cover W with grid.

One uniform random point in each cell.

+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+

Approximate pseudo- and composite likelihood scores:

$$\sum_{u \in \mathbf{X}} \frac{\lambda_{\theta}^{'}(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u)} - \sum_{u \in (\mathbf{X} \cup \mathbf{D})} \frac{\lambda_{\theta}^{'}(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u) + \rho(u)}$$

and

$$\sum_{u \in \mathbf{X}} \frac{\lambda_{\theta}^{'}(u)}{\lambda_{\theta}(u)} - \sum_{u \in (\mathbf{X} \cup \mathbf{D})} \frac{\lambda_{\theta}^{'}(u)}{\lambda_{\theta}(u) + \rho(u)}$$

Note: of logistic regression form with 'probabilities'

$$p(u|\mathbf{X}) = \frac{\lambda_{\theta}(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u) + \rho(u)} \quad \text{or} \quad p(u) = \frac{\lambda_{\theta}(u)}{\lambda_{\theta}(u) + \rho(u)}$$

I.e. probabilities that $u \in X$ given $u \in X \cup D$.

Features of 'logistic regression' type estimating functions

- bias problems eliminated
- logistic regression form ⇒ computations easy with glm()
- asymptotic covariance matrix implemented in spatstat ⇒ approximate confidence intervals
- possible to evaluate the proportion of estimation variance due to random quadrature points

Example: mucous membrane

$$86 \text{ (type 1)} + 807 \text{ (type 2)}$$
 points.

 1×0.7 observation window.

Marked point u = (x, y, m) where m = 1 or 2 (two types of points).

Bivariate Strauss point process with

$$\lambda_{\theta}(u, \mathbf{X}) = \exp[q_{m,\theta}(y) + \psi n_R(u, \mathbf{X})]$$

 $q_{m,\theta}(y)$: polynomial in spatial y-coordinate.

 $n_R(u, \mathbf{X})$: number of neighbors within range R = 0.008.

3600 stratified dummy points

Fitted polynomials

Fitted polynomials (with confidence intervals for selected *y* values):

Polynomials significantly different according to logistic likelihood ratio test (parametric bootstrap).

Decomposition of variance

	3600					14400			
•	estm.	sd	sd _{pl}	inc. (%)	_	sd	sd _{pl}	inc. (%)	
$q_1(0.1)$	6.004	0.195	0.189	3.608	C).191	0.189	0.812	
$q_1(0.3)$	4.528	0.267	0.263	1.332	C).264	0.263	0.301	
$q_1(0.5)$	3.994	0.406	0.404	0.555	C).404	0.404	0.146	
$q_2(0.1)$	7.800	0.091	0.078	15.623	C	0.082	0.079	3.801	
$q_2(0.3)$	7.204	0.083	0.075	10.923	C	0.076	0.075	2.589	
$q_2(0.5)$	7.123	0.086	0.077	10.558	C	080.0	0.078	2.824	
ψ	-2.594	0.344	0.341	0.971	().342	0.341	0.197	

 $\text{sd}_{\text{pl}} \approx \text{standard deviation for pseudo-likelihood without approximation.}$

Example: rain forest trees

Capparis Frondosa

Loncocharpus Heptaphyllus

Potassium content in soil.

Covariates pH, elevation, gradient, potassium,...

Clustered point patterns: Cox point process natural model.

Objective: infer regression model $\lambda_{\beta}(u) = \exp[\beta Z(u)^{\mathsf{T}}]$

Composite likelihood targeted at estimating intensity function.

Problem: covariates sampled on (coarse) deterministic grid.

Plots shown: interpolated values of covariates.

Hence unbiased Monte Carlo approximation not applicable.

For now: integral in log composite likelihood

$$\sum_{u\in\mathbf{X}}\log\lambda_{\beta}(u)-\int_{W}\lambda_{\beta}(u)\mathrm{d}u$$

approximated using numerical quadrature based on interpolated values.

Need to convince biologists to use random sampling designs.

Another issue: optimality?

Composite likelihood score

$$\sum_{u \in \mathbf{X}} \frac{\lambda_{\beta}'(u)}{\lambda_{\beta}(u)} - \int_{W} \lambda_{\beta}'(u) du$$

optimal for Poisson (likelihood).

Which f makes

$$e_f(\beta) = \sum_{u \in \mathbf{X}} f(u) - \int_W f(u) \lambda_{\beta}(u) du$$

optimal for Cox point process (positive dependence between points) ?

Optimal first-order estimating equation

Optimal choice of f: smallest variance

$$\mathbb{V}\mathrm{ar}\hat{\beta} = V_f = S_f^{-1}\Sigma_f S_f^{-1}$$

where

$$S_f = -\mathbb{E} \frac{\mathrm{d}}{\mathrm{d} eta^\mathsf{T}} e_f(eta) \quad \Sigma_f = \mathbb{V}\mathrm{ar} e_f(eta)$$

Possible to obtain optimal f as solution of certain Fredholm integral equation.

Numerical solution of integral equation leads to estimating function of quasi-likelihood type.

Quasi-likelihood

Integral equation approximated using Riemann sum dividing W into cells C_i with representative points u_i .

Quasi-likelihood

Integral equation approximated using Riemann sum dividing W into cells C_i with representative points u_i .

Resulting estimating function is quasi-likelihood

$$(Y-\mu)V^{-1}D$$

based on

$$Y = (Y_1, \dots, Y_m), \quad Y_i = 1[X \text{ has point in } C_i].$$

Quasi-likelihood

Integral equation approximated using Riemann sum dividing W into cells C_i with representative points u_i .

Resulting estimating function is quasi-likelihood

$$(Y-\mu)V^{-1}D$$

based on

$$Y = (Y_1, \dots, Y_m), \quad Y_i = 1[X \text{ has point in } C_i].$$

where
$$\mu_i = \mathbb{E} Y_i = \lambda_{\beta}(u_i) |C_i|$$
, $D = \left[d\mu(u_i) / d\beta_I \right]_{il}$

and V covariance of Y (involves covariance of random intensity):

$$V_{ij} = \mathbb{C}\text{ov}[Y_i, Y_j] = \mu_i \mathbb{1}[i = j] + |C_i||C_j|\mathbb{C}\text{ov}[\Lambda(u_i), \Lambda(u_j)]$$

Results with composite likelihood and quasi-likelihood

species	\widehat{eta}	
Loncocharpus	CL	$-6.49 - 0.021$ Nmin -0.11 P -0.59 pH -0.11 twi $(81.06^*, 7.45^*, 58.78, 282.89^*, 53.19^*) \times 10^{-3}$
	QL	$-6.49 - 0.023$ Nmin -0.12 P -0.55 pH -0.084 twi $(80.15^*, 6.95^*, 55.23^*, 266.10^*, 45.47) \times 10^{-3}$
Capparis	CL	$-5.07 + 0.028$ ele -1.10 grad $+0.0043$ K $(79.54^*, 9.98^*, 1200.36, 1.16^*) imes 10^{-3}$
Саррапз	QL	$-5.10 + 0.019$ ele -2.50 grad $+0.0039$ K $(77.77^*, 8.86^*, 935.02^*, 1.02^*) imes 10^{-3}$

Estimated standard errors always smallest for QL. Covariate grad significant according to QL but not for CL.

References

Waagepetersen (2007). An estimating function approach to inference for inhomogeneous Neyman-Scott processes, *Biometrics*.

Waagepetersen, R. (2007). Estimating functions for inhomogeneous spatial point processes with incomplete covariate data, *Biometrika*.

Jalilian, Guan and Waagepetersen (2012). Decomposition of variance for spatial Cox processes, *Scandinavian Journal of Statistics*, to appear.

Guan, Jalilian and Waagepetersen (2012). Optimal first order estimating functions for spatial point processes, submitted.

Baddeley, Couerjolly, Rubak and Waagepetersen (2012). A logistic regression estimating function for spatial Gibbs point processes, in preparation.

Thanks for your attention !

