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data examples
GNZ and Campbell formulae

Gibbs and Cox spatial point processes

Monte Carlo approximations and relation to logistic regression

°
°
°
o pseudo-likelihood and composite likelihood
°
@ examples of applications

°

quasi-likelihood

Aim: discuss closely related estimating functions for two very
distinct classes of point processes.
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Mucous membrane cells

Centres of cells in mucous membrane:

Repulsion due to physical
extent of cells
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Inhomogeneity - lower
intensity in upper part

Bivariate - two types of
cells

Same type of
inhomogeneity for two
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Data example: Capparis Frondosa

@ observation window W
= 1000 m x 500 m

o seed dispersal= clustering

@ environment = inhomogeneity
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Elevation Potassium content in soil.

Objective: quantify dependence on environmental variables.
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Intensity and conditional intensity

Point process X: random point pattern.
Assume observed in bounded window W c R2. u location in W.

Intensity A(u): for infinitesimal region A and u € A,

P(X point in A) = A(u)|A]

Conditional intensity A(u, X):
P(X has a point in A|X\ A) = A(u, X)|A|
Note
P(X point in A) = EP(X point in AJX\ A) = A(u) = EX(u, X)
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GNZ and Campbell formulae

Georgii-Nguyen-Zessin formula:

B f(u,X\u) = / E[f (u, X)A(u, X)]du

ueX w

for non-negative functions f.

Campbell formula:

EY f(u) = /W F()\(u)du

ueX

Note: special case of GNZ since A(u) = EA(u, X).
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Gibbs point processes

Gibbs point processes specified by explicit model for the conditional
intensity.

Strauss:

Ao(u, X) = exp[B + ¥nr(u,X)], >0, <0

ng(u, X): number of neighboring points within distance R from u.
Model for repulsion (typically the case for Gibbs).

Inhomogeneous: Z(u) covariate at u € R2,
Ao(u,X) = exp[BZ(u)T + g (u, X)]
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Cox processes

X Poisson process with intensity
function A(+):

total number of points Poisson and
given this, points iid with density
o A(u).

X is a Cox process driven by the random intensity function A if,
conditional on A = \, X is a Poisson process with intensity function
A
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Example: log Gaussian Cox process

log Gaussian Cox process (“point process GLMM")
Nu) = exp[BZ(u)" + Y (u)]

where {Y(u)} Gaussian random field:
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For Gibbs point process A(u, X) is given but A\(v) = EA(u, X) hard.

For Cox process, A(u, X) hard but since X|A is Poisson,
AMu) = EA(uw).

Often easy to evaluate for Cox processes.

E.g. logA(u) ~ N(BZ(u)T,0?) [log Gaussian Cox process]:

Au) = exp(BZ(u)" +0?/2)
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| A(u[X) | A(u) | GNZ | Campbell | interaction
Gibbs yes no yes no repulsive
Cox no yes no yes clustering
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Estimating function

Estimating function: e(6) [e(f, X)] function of § and data X.

Parameter estimate @ solution of
e(d)=0

0 unbiased Ef = 0* if e(f) unbiased Ee(6*) = 0 (6* true value).
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Estimating function

Estimating function: e(6) [e(f, X)] function of § and data X.

Parameter estimate 6 solution of
e(d)=0
0 unbiased Ef = 0* if e(f) unbiased Ee(6*) = 0 (6* true value).
Varf = S71¥571 ¥ = Vare(6*)

with sensitivity
d
— _E[—
5 = ~E[e(0)]
minus expected derivative of e(f)

How do we construct unbiased estimating functions involving X and
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Composite and pseudo-likelihood

Disjoint subdivision W = UT ; C; in
‘cells’ C;.

u; € C; ‘center’ point.

Random indicator variables:

Y; = 1[X has a point in C]

(presence/absence of points in C;).
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Composite and pseudo-likelihood

Disjoint subdivision W = UT ; C; in
‘cells’ C;.

u; € C; ‘center’ point.

Random indicator variables:

Y; = 1[X has a point in C]

(presence/absence of points in C;).

P(Y, = 1) = ‘C,‘|)\9(U,‘) and P(Y, = 1|X \ C,) = |C,'|)\9(U,',X)

Idea: form composite likelihoods based on Y;, e.g.
_ _ 1\1-Ys
HP =1)"(1 - P(Y;=1))"
(@ CENTRE FOR STOCHASTIC GEOMETRY
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Log composite likelihood (in fact log likelihood for Poisson):
S log Ag(u) / No(u)du
ueX w

Log pseudo-likelihood (Besag, 1977)

S log Ag(u, X\ ) — / Mo, X)du

ueX w
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Log composite likelihood (in fact log likelihood for Poisson):

S log Ag(u) - / No(u)du

ueX w

Log pseudo-likelihood (Besag, 1977)

S log Ag(u, X\ ) — / Mo, X)du

ueX w
Scores:
Ag(u) / / Ag(u, X\ u) / /
— Xg(u)du and R v Mg (u, X)du
%AQ(U) w0 %AQ(U,X\U) w00 %)

unbiased estimating functions by

Campbell /GNZ. _
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Issue:

@ integrals
/)\g(u)du and / Ap(u, X)du
w w

often not explicitly computable.

Numerical quadrature may introduce bias.
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Monte Carlo approximation

Let D ‘quadrature/dummy’ point process of intensity p(-) and
independent of X.

By GNZ

@/wamu_EE:-—ﬁgfL—

woxp MusX) + p(u)

By Campbell

/X Ju=F 2 Au)+p u)

ueXuD

Idea: replace integrals in pseudo- or composite likelihood with
unbiased estimates using D. CENTRE FOR STOCHASTIC GEOMETRY
N AND ADVANCED BIOIMAGING
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Dummy point process

Should be easy to simulate and mathematically tractable.

Stratified:

Cover W with grid.

One uniform random point in each cell.
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Approximate pseudo- and composite likelihood scores:

Ap(u, X\ v) Ag(u, X\ u)
Z)\guX\u) Z Ao(u, X\ v) + p(u)

€(XUD)

and

No(u) ()
2 Ao(u) 2 Ao(u) + p(u)

ueX ue(XuUD)

Note: of logistic regression form with ‘probabilities’

Ao(u, X\ v)
Ao(u, X\ u) + p(u)

)\g(u)

PL) = S(w) + o)

p(ulX) =

l.e. probabilities that u € X given u € X UD.
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Features of ‘logistic regression’ type estimating functions

@ bias problems eliminated
@ logistic regression form = computations easy with glm()

@ asymptotic covariance matrix implemented in spatstat =
approximate confidence intervals

@ possible to evaluate the proportion of estimation variance due
to random quadrature points
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Example: mucous membrane

86 (type 1) + 807 (type 2)
points.

1 x 0.7 observation
window.

Marked point u = (x,y, m) where m =1 or 2 (two types of points).

Bivariate Strauss point process with
Ao(u, X) = exp[gm,a(y) + nr(u, X)]

dm,0(y): polynomial in spatial y-coordinate.

nr(u, X): number of neighbors within range R = 0.008.
. . > CENTRE FOR STOCHASTIC GEOMETRY
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Fitted polynomials

Fitted polynomials (with
confidence intervals for selected y

values):
el T T T T T T T T
0.0 0.1 0.2 03 0.4 0.5 0.6 07

Polynomials significantly different
according to logistic likelihood
ratio test (parametric bootstrap).
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Decomposition of variance

3600 14400

estm. sd sdp  inc. (%) sd sdp  inc. (%)
g1(0.1) 6.004 0.195 0.189 3.608 0.191 0.189 0.812
g1(0.3) 4528 0.267 0.263 1.332 0.264 0.263 0.301
q1(0.5) 3.994 0.406 0.404 0.555 0.404 0.404 0.146
q2(0.1) 7.800 0.091 0.078 15.623 0.082 0.079 3.801
q2(0.3) 7.204 0.083 0.075 10.923 0.076  0.075 2.589
¢2(0.5) 7.123 0.086 0.077 10.558 0.080 0.078 2.824
P —2.594 0.344 0.341 0.971 0.342 0.341 0.197

sdp ~ standard deviation for pseudo-likelihood without
approximation.
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Example: rain forest trees

Capparis Frondosa Potassium content in soil.

Covariates pH, elevation,
gradient, potassium,...

Clustered point patterns: Cox
point process natural model.

Objective: infer regression model \s(u) = exp[3Z(u)T]

Com pOSIte |Ike| ! hOOd ta rgeted at CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

estimating intensity function.
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Problem: covariates sampled on (coarse) deterministic grid.
Plots shown: interpolated values of covariates.
Hence unbiased Monte Carlo approximation not applicable.

For now: integral in log composite likelihood

Zlog)\g(u)—/ Ag(u)du

ueX w

approximated using numerical quadrature based on interpolated
values.

Need to convince biologists to use random sampling designs.
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Another issue: optimality 7

Composite likelihood score

A5 (u) ,
Z)\B(u —/W)\B(u)du

ueX

~—

optimal for Poisson (likelihood).

Which f makes

er(8) = " F(u) - /W F(u)\s(u)du

ueX

optimal for Cox point process (positive dependence between points)
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Optimal first-order estimating equation

Optimal choice of f: smallest variance
Varf = Vp = 5715651

where d
Sf = —Ewef(ﬂ) zf = Varef(ﬁ)

Possible to obtain optimal f as solution of certain Fredholm
integral equation.

Numerical solution of integral equation leads to estimating function
of quasi-likelihood type.
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Quasi-likelihood

Integral equation approximated using Riemann
sum dividing W into cells C; with
representative points u;.
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Quasi-likelihood

Integral equation approximated using Riemann
sum dividing W into cells C; with
representative points u;.

Resulting estimating function is quasi-likelihood

(Y —p)vViD
based on

Y =(Y1,---,Ym), Yi=1[X has point in C].
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Quasi-likelihood

Integral equation approximated using Riemann
sum dividing W into cells C; with
representative points u;.

Resulting estimating function is quasi-likelihood

(Y —p)vViD
based on

Y =(Y1,---,Ym), Yi=1[X has point in C].

where i = BY; = Aa(u)| G, D = [du(u)/d5],
and V covariance of Y (involves covariance of random intensity):
Vij = Cov[Y;, Yj] = pilli = j] + |G| Gi|Cov[A(u;), A(uj)]
e
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Results with composite likelihood and quasi-likelihood

species B
cL 649 —0.021Nmin — 0.11P — 0.50pH — 0.11twi
Loncocharpus (81.06*,7.45*,58.78,282.89*,53.19%) x 1073
aL —6.49 — 0.023Nmin — 0.12P — 0.55pH — 0.084twi
(80.15%,6.95*, 55.23*,266.10*, 45.47) x 1073
L —5.07 + 0.028ele — 1.10grad + 0.0043K
Capparis (79.54*,9.98*1200.36,1.16*) x 1073
QL —5.10 4 0.019ele — 2.50grad + 0.0039K
(77.77%,8.86*,935.02*,1.02*) x 1073

Estimated standard errors always smallest for QL. Covariate grad
significant according to QL but not for CL.
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Thanks for your attention !
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