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1. Intro to point processes, moment measures and the Poisson process

Lectures:

1. Intro to point processes, moment measures and the Poisson process

2. Cox and cluster processes

3. The conditional intensity and Markov point processes

4. Likelihood-based inference and MCMC

Aim: overview of stats for spatial point processes - and spatial

point process theory as needed.

Not comprehensive: the most fundamental topics and our favorite

things.

Data example (Barro Colorado Island Plot)

Observation window W = [0,1000] x [0.500]m?

Beilschmiedia
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Gradient norm (steepness)

Sources of variation: elevation and gradient covariates and

clustering due to seed dispersal.
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Whale positions

0 10 20 30 40 50

Aim: estimate whale intensity A
Observation window W = narrow strips around transect lines
Varying detection probability: inhomogeneity (thinning)

Variation in prey intensity: clustering
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What is a spatial point process ?

Definitions:

1. a locally finite random subset X of R? (#(X N A) finite for all
bounded subsets A C R?)

2. a random counting measure N on R?
Equivalent provided no multiple points: (N(A) = #(X N A))
This course: appeal to 1. and skip measure-theoretic details.
In practice distribution specified by an explicit construction (this

and second lecture) or in terms of a probability density (third
lecture).

Golden plover birds in Peak District

Birds in 1990 and 2005 Cotton grass covariate
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Moments of a spatial point process

Fundamental characteristics of point process: mean and covariance
of counts N(A) = #(X N A).

Intensity measure i
u(A) =EN(A), ACR’
In practice often given in terms of intensity function

H(A) = /A p(u)du

Infinitesimal interpretation: N(A) binary variable (presence or
absence of point in A) when A very small. Hence

p(u)dA = EN(A) ~ P(X has a point in A)
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Second-order moments
Second order factorial moment measure:

+
pP(AxB)=E> 1uecAveBl ABCR?

u,veX

://p(2)(u7v)dudv
AJB

where p(®(u, v) is the second order product density

NB (exercise):

Cov[N(A), N(B)] = (A x B) + (AN B) — u(A)(B)

Campbell formula (by standard proof)

E i h(u,v) = // h(u, v)p® (u, v)dudv

u,veX
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The Poisson process

Assume p locally finite measure on R? with density p.

X is a Poisson process with intensity measure p if for any bounded
region B with p(B) > 0:

1. N(B) ~ Poisson(u(B))
2. Given N(B), points in X N B i.i.d. with density « p(u), u € B

B =10,1] x [0,0.7]:

Homogeneous: p = 150/0.7 Inhomogeneous: p(x,y) oc e 06y
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Pair correlation function and K-function
Infinitesimal interpretation of p(® (u € A v € B):
p@(u,v)dAdB ~ P(X has a point in each of A and B)

Pair correlation: tendency to cluster or repel relative to case where
points occur independently of each other

_ P (u,v)

V)= o(v)

Suppose g(u,v) = g(u — v). K-function (cumulative quantity):

#

o u u u—i M
k(o= [ 1l < teldu = e D TECES
veX

(= non-parametric estimation if p(u)p(v) known)

Existence of Poisson process on R?: use definition on disjoint
partitioning R? = U2, B; of bounded sets B;.

Independent scattering:
» A, B C R? disjoint = XN A and X N B independent

> D (u,v) = p(u)p(v) and glu,v) =1
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Characterization in terms of void probabilities Homogeneous Poisson process as limit of Bernouilli trials

The distribution of X is uniquely determined by the void
probabilities P(X N B = (), for bounded subsets B C R2. i
Consider disjoint subdivision
Intuition: consider very fine subdivision of observation window — W = U7, G where |G| = |W/|/n. With
then at most one point in each cell and probabilities of probability p|C;| a uniform point is $
absence/presence determined by void probabilities. placed in C;. i
T
Hence, a point process X with intensity measure p is a Poisson - *ﬁ

process if and only if
P(XN B =0) = exp(—u(B)) Number of points in subset A is b(n|A|/|W], p|W/|/n) which
converges to a Poisson distribution with mean p|A|.

for any bounded subset B.
Hence, Poisson process default model when points occur

independently of each other.
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Exercises Distribution and moments of Poisson process
1. S.how Ehat the covariance between counts N(A) and N(B) is X a Poisson process on S with (S) = [ p(u)du < oo and F set
given by of finite point configurations in S.
CovIN(A), N(B] = (A x B)+ u(A1 B) — u(A)u(B)
2 Show that By definition of a Poisson process
£
1 lu—v| <t P(XeF 1
k()= [ 1ol < dg(upao= e > ez (xeh )
R2 Bl Sme  PWn(v) 0 o—n(S) n
vexX :Z 1 / 1{x1, %2, ..., xn} € F]Hp(x,-)dxl...dx,,
. . n: Sn B
What is K(t) for a Poisson process ? n=0 i=1
(Hint: use the Campbell formula) Similarly,
3. (Practical tstat exercise) Compute and interpret a
( ical spatstat exercise) pu interp EA(X)

non-parametric estimate of the K-function for the spruces
n

X o—1(S)
data set, = Z © | / h({x1,x2, ..., Xn}) Hp(x,-)dxl ...dx,
(Hint: load spatstat using library(spatstat) and the =0 IS i=1

spruces data using data(spruces). Consider then the

Kest () function.)
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Proof of independent scattering (finite case) Superpositioning and thinning

Consider bounded A, B C R2. . .
If X1,Xz,... are independent Poisson processes (p;), then

X N (AU B) Poisson process. Hence superposition X = U2, X; is a Poisson process with intensity
function p = >"7°; pi(u) (provided p integrable on bounded sets).

PXNAe F,XNBeG) (x={x1,...,Xn})

o _ n Conversely: Independent m-thinning of Poisson process X:
e—H(AUB)
= Z 7/ 1xNAe F,xNnB e G] Hp(x,-)dxl - dx, independent retain each point u in X with probability 7(u).
n=0 n! (AuB)" im1 Thinned process Xipin and X \ Xhin are independent Poisson
e—H(AUB) M nl processes with intensity functions m(u)p(u) and (1 — 7(u))p(u).
fz 3 oty M m € ) Ty o
ml(n—m)! Jam (Superpositioning and thinning results most easily verified using

n void probability characterization of Poisson process, see M & W,
/ 1{xm+1, ..., xn} € G] H p(xi)dxy ... dx, 2003)
n—m ":1
= (interchange order of summation and sum over m and k = n— m) For general point process X: thinned process Xinin has product
P(XNA€ F)P(XNB € G) density 7(u)m(v)p® (u, v) - hence g and K invariant under

independent thinning.
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Density (likelihood) of a finite Poisson process
X1 and X; Poisson processes on S with intensity functions p; and
p2 where [ po(u)du < oo and pa(u) = 0= p1(u) = 0. Define

0/0:=0. Then
In particular (if S bounded): X; has density
P(X1 S F)
0 n
e*m(S) f(x) = efs (1—p1(u))du X;

:Z - / 1[x € F]le(X,')dxl...dxn (x = {x1,.., X }) (x) = le(

n=0 ! i—1
Pl with respect to unit rate Poisson process (p2 = 1).

= o / 1[x € Fler2(5)=m(S) H pilx sz xj)dxi . .

n=0
=E(1[Xz € F]f(X2))

where
Pl XI
f(x) = eH2(8)—p1(S)
,]‘_[1 p2(xi)

Hence f is a density of X; with respect to distribution of X,.
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Data example: tropical rain forest trees Inhomogeneous Poisson process

Observation window W = [0,1000] x [0, 500] Log linear intensity function

Beilschmiedia Ocotea -
o & %?i?fgg Sf?’g °°oo 3 . %fﬁ P(U;ﬁ) = exp(z(u)ﬁ )7 Z(U) = (]-;Zelev(u)yzgrad(u))

Estimate 3 from Poisson log likelihood (spatstat)

Z z(u)8T — /W exp(z(u)BT)du (W = observation window)

Elevation LEXAW

035

025

Model check using edge-corrected estimate of K-function
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#

K(t) = Z 1JJu — v[| < 1]
u,veXNW p(u; B)p(v; B)IW N Wy |

0 005
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“100 9

Sources of variation: elevation and gradient covariates and possible

clustering/aggregation due to unobserved covariates and/or seed W,,_, translated version of W. |A|: area of A C R?.
dispersal. 21760 22/69
Implementation in spatstat K-functions
Beilschmidia Ocotea

> bei=ppp(beilpe$X,beilpe$Y,xrange=c(0,1000) ,yrange=c(0,500))

> beifit=ppm(bei,”elev+grad,covariates=1ist(elev=e1evim,
grad=gradim))

> coef(beifit) #parameter estimates

(Intercept) elev grad

-4.98958664 0.02139856 5.84202684

> asympcov=vcov(beifit) #asymp. covariance matrix

> sqrt(diag(asympcov)) #standard errors

KO
30000 40000
L L
30000 40000

K@®

20000

20000
L

10000
L
10000

(Intercept) elev grad
0.017500262 0.002287773 0.255860860 o -
> rho=predi ct. ppm(beif it) o 20 o 0 a0 100 o 2 s 0 80 100

> Kbei=Kinhom(bei,rho) #warning: problem with large data sets.
> myKbei=myKest (cbind(bei$x,bei$y),rho,100,3,1000,500,F) #my own

. . _ 2 . _ .
#procedure Poisson process: K(t) = wt* (since g = 1) less than K functions

for data. Hence Poisson process models not appropriate.
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Exercises

1. Check that the Poisson expansion (1) indeed follows from the
definition of a Poisson process.

2. Compute the second order product density for a Poisson
process X.

(Hint: compute second order factorial measure using the
Poisson expansion for X N (AU B) for bounded A, B C R?.)

3. (if time) Assume that X has second order product density p(?)
and show that g (and hence K) is invariant under
independent thinning (note that a heuristic argument follows
easy from the infinitesimal interpretation of p(2)).

(Hint: introduce random field R = {R(u) : u € R?}, of
independent uniform random variables on [0, 1], and
independent of X, and compute second order factorial
measure for thinned process Xehin = {u € X|R(u) < p(uv)}.)
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Solution: invariance of g (and K) under thinning
Since Xinin = {v € X: R(u) < p(u)},

#
E > 1uecAveB]
u,vEXihin
#

=E Y 1[R(u) < p(u), R(v) < p(v),u € A,v € B]

u,veX

#
=EE[ > 1[R(v) < p(u), R(v) < p(v),u € A, v € B] | X]
u,veX

#
=E > p(u)p(v)i[u € A,v € B]

u,veX

// )@ (u, v)dudv

Solution: second order product density for Poisson

#
E Z 1lue A,v e B]
u,veX

e—HAUB)
—Z / Zl[ueA VEB]HpX, dxg ..
(AUB)"

u,veX

n—=
X o—H(AUB)

(A)u(B)u(AU B)"

Zs (-2 "
~u(A)u(B) = [ plu)o(v)dud
AxB

2. Cox and cluster processes

i=1

.dxp

e—H(AUB)
:Z ()/ / 1[X1€AX2€B]Hp(X, )dx ..
! (AuB)" J (AUB)"

26

.dxp
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Cox processes

X is a Cox process driven by the random intensity function A if,
conditional on A = )\, X is a Poisson process with intensity
function A.

Calculation of intensity and product density:

p(u) = EA(w),  p®(u,v) = E[A(u)A(v)]

Cov(A(u),A(v)) >0« g(u,v) >1 (clustering)

Overdispersion for counts:

VarN(A) = EVar[N(A) | |+ VarE[N(A) | A] = EN(A)+VarE[N(A) | A]

29 /69

Two simulated homogeneous LGCP's

- .d' . . N

Exponential covariance function  Gaussian covariance function
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Log Gaussian Cox process (LGCP)

» Poisson log linear model: log p(u) = z(u)3"
» LGCP: in analogy with random effect models, take

log Au) = 2(u) 3T + W(u)

where W = (V(u)),cg2 is a zero-mean Gaussian process
» Often sufficient to use power exponential covariance functions:

c(u,v) = Cov[W(u), ¥(v)] = o2 exp <7Hu — v||‘5/oz) ,

o,a >0, 0 <4 <2 (or linear combinations)
» Tractable product densities

p(u) =EA(u) = FIT BV (W) — exp (z(u)ﬂT + c(u, u)/2)

CEN@DAWT
8lu.v) = = p R = = e(e(u,v)
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Cluster processes

M ‘mother’ point process of cluster centres. Given M, X,,, me M
are 'offspring’ point processes (clusters) centered at m.

Intensity function for Xn,: af(m, u) where f probability density
and « expected size of cluster.

Cluster process:

X = UmeMXm
By superpositioning: if cond. on M, the X,,, are independent
Poisson processes, then X Cox process with random intensity

function
Au) =« Z f(m, u)
meM
Nice expressions for intensity and product density if M Poisson on
R? with intensity function p(-) (Campbell):

EA(u) = Ea S f(m, u) = a/f(m, Wp(m)dm (= ke if p() = K

meM and f(m, u) = f(u—m))



Example: modified Thomas process
r-. . . Mothers (crosses) station-
] 5 ary Poisson point process
) . M with intensity x > 0.
e T " o x - .

distributed around moth-

ers according to bivariate

] . 3 * isotropic Gaussian density

f.

w: standard deviation of Gaussian density
a: Expected number of offspring for each mother.

Cox process with random intensity function:

ANu) =« Z flu—mw)

meM
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Density of a Cox process

v

Restricted to a bounded region W, the density is

exp <|W - /W /\(u)du) 11 A(u)]

ueX

f(x)=E

Not on closed form

v

v

Fourth lecture: likelihood-based inference (missing data
MCMC approach)

Now: simulation free estimation

v

z1:p(t) = (21(v), . . ., zp(u)) vector of p nonconstant covariates.

Inhomogeneous Thomas process

B1:p = (B1,- .. Bp) regression parameter.

Random intensity function:

Au) = aexp(z(u)l;p,@Ip) Z flu—mw)

Rain forest example:

meM

21:2(U) = (Zelev(u)a zgrad(u))

elevation/gradient covariate.

pa(u) = rovexp(z(u)1pft.,) = exp(z(u)T)
z(u) = (1, z1:p(v))

Consider indicators N; = 1[X N C; # (] of occurrence of points in
disjoint C; (W = UCG;) where P(N; = 1) = pg(u;)dG;, uj € G

Parameter Estimation: regression parameters
Intensity function for inhomogeneous Thomas (p(-) = k):

B3 = (log(ra), f1.p)

Limit (dC; — 0) of composite log likelihood

34 /69

[T (os(udCYNi(1=ps(ui)dC) =" = T ps(ui)™ (1—pp(ui)d C) ="

i=1

is

9= Y togptui) - [

ueXNW

i=1

Maximize using spatstat to obtain B.

w

p(u; B) du
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Asymptotic distribution of regression parameter estimates Parameter Estimation: clustering parameters
Assume increasing mother intensity: kK = kK, = nk — oo and
M = U?_;M;, M; independent Poisson processes of intensity &.

. . Theoretical expression for (inhomogeneous) K-function:
Score function asymptotically normal:

1 dip) 1 ( S z(u)—n%a/Z(U)eXP(Z(”)lfPBIp)dU)

B K(t;k,w) = mt* + (1 — exp(—t*/(2w)?)) /k.
ueXNW w

VndlogadBr, — v/n

1 « . T Estimate x and w by matching theoretical K with semi-parametric
- Nz Z [ Z Z 2(u) — Ra /Wexp(zl;p(u)ﬂlzp)du] ~ N(0, V) estimate (minimum contrast)
i=1

meM; ueXp,NW

where V. =Var) > cx aw 2(u) (Xp offspring for mother 0 # 1lu—v|| <1
1 m K t — _ _ —
m). YV ERAW AMu; B)A(v; )W N W,,_, |
By standard results for estimating functions (J observed
information for Poisson likelihood):
Vn|(log(&), Brp) — (log @, Brp)] = N(0,J7 1V
37 /69 38/69

Results for Beilschmiedia Generalisations

> Shot noise Cox processes driven by A(u) = > yeo Vk(c, u)

Parameter estimates and confidence intervals (Poisson in red). where ¢ € R2, 4 > 0 (& = marked Poisson process)

Elevation Gradient K e w . .
0.02 [-0.02,0.06] 5.84 [0.89,10.80] 8e-05 85.9 20.0 i L o
[0.02,0.03] [5.34,6.34] -
Clustering: less information in data and wider confidence intervals . :
than for Poisson process (independence). A : 1’ J %
' ]
Evidence of positive association between gradient and 5 s i ZTZSVPI,{}‘}D D%ji g‘ans
Beilschmiedia intensity. g £ .. . mj” i F

> Generalized SNCP's... (Mgller & Torrisi, 2005)
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Exercises
1. For a Cox process with random intensity function A, show that
p(u) =EA(u),  p®(u,v) = E[Nu)A(v)]

2. Show that a cluster process with Poisson number of iid
offspring is a Cox process with random intensity function

Nu)=a > f(m,u)

meM
(using notation from previous slide on cluster processes. Hint:
use void probability characterisation.
3. Compute the intensity and second-order product density for

an inhomogeneous Thomas process.

(Hint: interpret the Thomas process as a Cox process and use
the Campbell formula)
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Density with respect to a Poisson process

X on bounded S has density f with respect to unit rate Poisson Y
if
P(X € F) =E(1[Y € FIf(Y))
=S|

Y [ ke AR (= D)

n=0
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3. The conditional intensity and Markov point processes

Example: Strauss process

For a point configuration x on a bounded region S, let n(x) and
s(x) denote the number of points and number of (unordered) pairs
of R-close points (R > 0).

A Strauss process X on S has density
1
f(x) = . exp(Bn(x) + 1s(x))
with respect to a unit rate Poisson process Y on S and

¢ = Eexp(n(Y) + ¥s(Y)) (2)

is the normalizing constant (unknown).

Note: only well-defined (¢ < o0) if ¢ <O0.
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Intensity and conditional intensity Markov point processes
Suppose X has hereditary density f with respect to Y

f(x) > 0= f(y) >0,y C x Def: suppose that f hereditary and A(u,x) only depends on x

through x N b(u, R) for some R > 0 (local Markov property). Then
Intensity function p(u) = Ef(Y U {u}) usually unknown (except for f is Markov with respect to the R-close neighbourhood relation.
Poisson and Cox/Cluster).

Instead consider conditional intensity Thm (Hammersley-Clifford) The following are equivalent.

1. f is Markov.
Mu,x) = f(xU{u}) ,
f(x) :
(does not depend on normalizing constant !) f(x) = H #(y))

yCx
Note

p(u) =EF(Y U{u}) =E[A(u,Y)F(Y)] = EX(u, X)

where ¢(y) = 1 whenever ||u — v|| > R for some u,v € y.

Pairwise interaction process. ¢(y) = 1 whenever n(y) > 2.

and
p(u)dA ~ P(X has a point in A) = EP(X has a point in A[X\A),u € A NB: in H-C, R-close neighbourhood relation can be replaced by an
Hence, A(u, X)dA probability that X has point in very small region arbitrary symmetric relation between pairs of points.

A given X outside A.
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Modelling the conditional intensity function Some examples

: . , . Strauss (pairwise interaction):
Suppose we specify a model for the conditional intensity. Two

: 1
questions: Au,x) = exp (B+¢ Y 1fllu=v|| < R]), f(x) = —exp (Bn(x)+us(x) (¢ <0)
1. does there exist a density f with the specified conditional vEx
intensity ?
2. is f well-defined (integrable) ? Overlap process (pairwise interaction marked point process):
1
Solution: A(u; m), x) = P B+ Z |b(u, m)Nb(u',m")]) (v <0)
1. find f by identifying interaction potentials (u'sm)ex
(Hammersley-Clifford) or guess f. where x = {(u1, m1), ..., (s, mp)} and (u;, m;) € R? x [a, b].
2. sufficient condition (local stability): A(u,x) < K Area-interaction process:
1
NB some Markov point processes have interactions of any order in f(x) = &P (Bn(x)+¥V(x)),  A(u,x) = exp (B+9(V({u}Ux)—V(x))

\F/;/rl;f:SSc)ase H-C theorem is less useful (e.g. area-interaction V(%) = | Usex b(u, R/2)| is area of union of balls b(u, R/2), u € x.

NB: ¢(-) complicated for area-interaction process.
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The Georgii-Nguyen-Zessin formula (‘Law of total Statistical inference based on pseudo-likelihood
probability’)

x observed within bounded S. Parametric model Ag(u, x).

EZ (0, X\ {u}) = /SIE[)\(U,X)k(u,X)]du _ /SE![k(u,X) | u]p(u) du Let N; = 1[x N G; # 0] where C; disjoint partitioning of S = U; (.

uex P(N,’ =1 ‘ XN 5\ C,) ~ )\g(u,',X)dC; where u; € C;. Hence

composite likelihood based on the N;:
E'[- | u]: expectation with respect to the conditional distribution of n n
X\ {u} given u € X (reduced Palm distribution) H()\g(u;,x)dC;)N"(lf)\o(u,',x)dC,')l’N" = H)\g(u,',x)N"(lf)\e(u,',x)dC,-)l’N"

i=1 i=1
Density of reduced Palm distribution:

f(x|u) = f(x U {u})/p(u)

which tends to pseudo likelihood function

H)\g(u,x) exp (— / No(u, x)du)

S
uex
NB: GNZ formula holds in general setting for point process on RY.

Score of pseudo-likelihood: unbiased estimating function by GNZ.
Useful e.g. for residual analysis.
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The spatial Markov property and edge correction

Let B C S and assume X Markov *
with interaction radius R. :

Pseudo-likelihood estimates asymptotically normal but asymptotic

variance must be found by parametric bootstrap. Define: 9B points in 5\ B of

distance less than R \ ' +

Flexible implementation for log linear conditional intensity (fixed
R) in spatstat

Factorization (Hammersley-Clifford):

f= [ o JI

yCxN(BUIB) yCx\B:
ynS\(BUIB)#D

Estimation of interaction range R: profile likelihood (?)

Hence, conditional density of X N B given X \ B

fe(zly) o< f(zUYy)

depends on y only through 9B Ny.
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Edge correction using the border method

Suppose we observe x realization of X N W where W C S.

Problem: density (likelihood) fiv(x) = Ef(x U Ys\1v) unknown.

Border method: base inference on

fW@R(X n W@R|X n (W \ W@R))
i.e. conditional density of XN Wgg given X outside Wgg.

+
+
o + !
N o
3 * :
S W OR |
b R + W

S

Strauss model for spruces

> fit=ppm(unmark(spruces),”1,Strauss(r=2),rbord=2)
> coef (fit)

(Intercept) Interaction
-1.987940 -1.625994

> summary (fit)#details of model fitting

53/69

> simpoints=rmh(fit)#simulate point pattern from fitted model

>

K@)

20
L

200
L

150
L

100

Kenvestrauss=envelope (fit,nrank=2)
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Example: spruces

Check fit of a homogeneous Poisson process using K-function and

simulations:

> library(spatstat)

data(spruces)

>
> plot(Kest(spruces)) #estimate K function
> Kenve=envelope (spruces,nrank=2)# envelopes "alpha"=

Generating 99 simulations of CSR ...
1, 2, 3, 4, 5,6, 7,8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

)
10 20 2% 30
L

100

Exercises

1. Suppose that S contains a disc of radius € < R/2. Show that

(2) is not finite, and hence the Strauss process not
well-defined, when 1) is positive.

(Hint: >0,

(e
n

2

E ) exp(nB + n(n —1)/2) = 00 if ¢ > 0.)

2. Show that local stability for a spatial point process density

ensures integrability. Verify that the area-interaction process

is locally stable.
3. (spatstat) The multiscale process is an extension of the
Strauss process where the density is given by

k
F(x) oc exp(Bn(x) + D Ymsm(x))
m=1

where s,(x) is the number of pairs of points u;, u; with

llui — uj|| €]rm—1,rm] where 0 =1rp <r <r <---<rg Fita
multiscale process with k = 4 and of interaction range ry =5
to the spruces data. Check the model using the K-function.

(Hint: use the spatstat function ppm with the PairPiece
potential. The function envelope can be used to compute

envelopes for the K-function under the fitted model.)

%
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Exercises

4. (if time) Verify the Georgii-Nguyen-Zessin formula for a finite
point process.

(Hint: consider first the case of a finite Poisson-process Y in
which case the identity is known as the Slivnyak-Mecke
theorem, next apply Eg(X) = E[g(Y)f(Y)].)

5. (if time) Check using the GNZ formula, that the score of the
pseudo-likelihood is an unbiased estimating function.

Maximum likelihood inference for point processes

Concentrate on point processes specified by unnormalized density

ho(x), .
fo(x) = =0 hy(x)

Problem: ¢(6) in general unknown = unknown log likelihood

1(0) = log hy(x) — log c(6)
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4. Likelihood-based inference and MCMC

Importance sampling

Importance sampling: 6y fixed reference parameter:

1(0) = log hy(x) — log CC((;O))
and
(@) _n he(X)
c(Bo) ~ " hay(X)
Hence )
c(f) 1~ he(X))
C(eo) m Z th(X")

where X% X1, ..., sample from f5, (later).
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Exponential family case

ho(x) = exp(t(x)0T)

1(6) = t(x)8" — log c(#)

c(6)

<(60) = Eg, exp(t(X)(0 — 60)")

Caveat: unless § — g ‘small’, exp(t(X)(6 — 6)T) has very large
variance in many cases (e.g. Strauss).
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Maximisation of likelihood (exp. family case)
Score and observed information:
U(Q) = t(x) - Egt(X), _/(9) = Vargt(X),
Newton-Rahpson iterations:

9m+1 —gm =+ u(0’")j(9"’)’1

Monte Carlo approximation of score and observed information: use
importance sampling formula

Eok(X) = Egy |k(X)exp (£(X)(0 = 00)) | /(ca/cao)

with k(X) given by t(X) or t(X)Tt(X).
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Path sampling (exp. family case)

Derivative of cumulant transform:
1o <O
& c(bo)

Hence, by integrating over differentiable path 6(t) (e.g. line)
linking 09 and 6;:

=Ey t(X)

o S0 = [k 10

Approximate Ey(5)t(X) by Monte Carlo and fol by numerical
quadrature (e.g. trapezoidal rule).

| d9(s)T ds

NB Monte Carlo approximation on log scale more stable.

MCMC simulation of spatial point processes
Birth-death Metropolis-Hastings algorithm for generating ergodic
sample X%, X!, ... from locally stable density f on S:

Suppose current state is X', i > 0.
1. Either: with probability 1/2
> (birth) generate new point u uniformly on S and accept
XProp = X7 U {u} with probability

. f(XT U {u})|S|
min {1 0 1) |
or
> (death) select uniformly a point v € X’ and accept
XProP = X7\ {u} with probability

. FOXI\ {u})n
min {1, %}

(if X" = 0 do nothing)

. if accept X/t = XPoP: otherwise X/+1 = X'.
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Missing data

Initial state Xq: arbitrary (e.g. empty or simulation from Poisson

process). Suppose we observe x realization of XN W where W C S.
Note: Metropolis-Hastings ratio does not depend on normalizing Problem: likelihood (density of X N W)
constant: )
FXTU{u})IS| A, X0) S| fwo(x) = Efy(x N Ys\w)
F(X')(n+1) T (n+1) o . .
not known - not even up to proportionality ! (Y unit rate Poisson
on S
Generated Markov chain Xg, X1, ... irreducible and aperiodic and )
hence ergodic: = S0 k(X') — Ek(X)) Possibilities:

» Monte Carlo methods for missing data.

» Conditional likelihood

Moreover, geometrically ergodic and CLT:

m—1
vm (% D k(X)) - Ek(X)) — N(0,0%) 0 (X N Werlx 1 (W \ Wag)) o exp(£(x)67)
i=0

(note: x N (W \ WgRg) fixed in t(x))
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Likelihood-based inference for Cox/Cluster processes

Consider Cox/cluster process X with random intensity function Likelihood

/\(u):ozz f(m,u) f(x, MN W;0)

L(0) = Eof(x|M) = L(60)Egy | ————=—~< | XN W =x
e (0) = Baf (M) = L) [ =0 | ]

b d within W (M Poi ith intensity k). N . N .
observed within ( oisson with intensity r) + derivatives can be estimated using importance sampling/MCMC

Assume (m, ) of bounded support and choose bounded W so that - however more difficult than for Markov point processes.

Au) = a Z f(m,u) forue W Bayesian inference: introduce prior p(#) and sample posterior
meMAW p(6, m|x) o f(x,m; 0)p(6)
(XN W,MnN W) finite point process with density: (data augmentation) using birth-death MCMC.

F(x, m; ) = £(m; 8)f (xm; 8) = el V1) gn(m) [ WI= [ Aw)du TT A ()

uex
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Exercises
1. Check the importance sampling formulas

Eak() = B, |00 225 /)

and
) 5 h(X)

= 3
(00) ~ "y (X) &
2. Show that the formula

f(x, M N W;0)

LO)/L(00) = B | 7S

XNW =x|
follows from (3) by interpreting L(6) as the normalizing
constant of f(m|x; ) x f(x,m;9).

3. (practical exercise) Compute MLEs for a multiscale process
applied to the spruces data. Use the newtonraphson.mpp ()
procedure in the package MppMLE.
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