An introduction to statistics for spatial point processes

Jesper Møller and Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

November 29, 2007

1 / 69

- 1. Intro to point processes, moment measures and the Poisson process
- Cox and cluster processes
- 3. The conditional intensity and Markov point processe
- Likelihood-based inference and MCMC

Lectures:

- 1. Intro to point processes, moment measures and the Poisson process
- 2. Cox and cluster processes
- 3. The conditional intensity and Markov point processes
- 4. Likelihood-based inference and MCMC

Aim: overview of stats for spatial point processes - and spatial point process theory as needed.

Not comprehensive: the most fundamental topics and our favorite things.

2/69

Data example (Barro Colorado Island Plot)

Observation window $W = [0, 1000] \times [0.500] \text{m}^2$

Beilschmiedia

Ocotea

Elevation

Gradient norm (steepness)

Sources of variation: elevation and gradient covariates *and* clustering due to seed dispersal.

Whale positions

Close up:

Aim: estimate whale intensity λ

Observation window W = narrow strips around transect lines

Varying detection probability: inhomogeneity (thinning)

Variation in prey intensity: clustering

5 / 69

Golden plover birds in Peak District

Birds in 1990 and 2005

split(bothCU)

Cotton grass covariate

6/69

Change in spatial distribution of birds between 1990 and 2005?

What is a spatial point process?

Definitions:

- 1. a locally finite random subset **X** of \mathbb{R}^2 (#(**X** \cap A) finite for all bounded subsets $A \subset \mathbb{R}^2$)
- 2. a random counting measure N on \mathbb{R}^2

Equivalent provided no multiple points: $(N(A) = \#(\mathbf{X} \cap A))$

This course: appeal to 1. and skip measure-theoretic details.

In practice distribution specified by an explicit construction (this and second lecture) or in terms of a probability density (third lecture).

Moments of a spatial point process

Fundamental characteristics of point process: mean and covariance of counts $N(A) = \#(X \cap A)$.

Intensity measure μ :

$$\mu(A) = \mathbb{E}N(A), \quad A \subseteq \mathbb{R}^2$$

In practice often given in terms of intensity function

$$\mu(A) = \int_A \rho(u) \mathrm{d}u$$

Infinitesimal interpretation: N(A) binary variable (presence or absence of point in A) when A very small. Hence

$$\rho(u)dA \approx \mathbb{E}N(A) \approx P(X \text{ has a point in } A)$$

Second-order moments

Second order factorial moment measure:

$$\mu^{(2)}(A \times B) = E \sum_{u,v \in \mathbf{X}}^{\neq} \mathbf{1}[u \in A, v \in B] \qquad A, B \subseteq \mathbb{R}^2$$
$$= \int_{A} \int_{B} \rho^{(2)}(u, v) \, \mathrm{d}u \, \mathrm{d}v$$

where $\rho^{(2)}(u, v)$ is the second order product density

NB (exercise):

$$\mathbb{C}\mathrm{ov}[N(A),N(B)] = \mu^{(2)}(A \times B) + \mu(A \cap B) - \mu(A)\mu(B)$$

Campbell formula (by standard proof)

$$\mathbb{E}\sum_{u,v\in\mathbf{X}}^{\neq}h(u,v)=\iint h(u,v)\rho^{(2)}(u,v)\mathrm{d}u\mathrm{d}v$$

9 / 69

The Poisson process

Assume μ locally finite measure on \mathbb{R}^2 with density ρ .

X is a Poisson process with intensity measure μ if for any bounded region B with $\mu(B) > 0$:

- 1. $N(B) \sim \text{Poisson}(\mu(B))$
- 2. Given N(B), points in $\mathbf{X} \cap B$ i.i.d. with density $\propto \rho(u)$, $u \in B$

$$B = [0,1] \times [0,0.7]$$
:

Homogeneous: $\rho = 150/0.7$ Inhomogeneous: $\rho(x,y) \propto {
m e}^{-10.6y}$

Pair correlation function and K-function

Infinitesimal interpretation of $\rho^{(2)}$ ($u \in A$, $v \in B$):

$$\rho^{(2)}(u,v)dAdB \approx P(\mathbf{X} \text{ has a point in each of } A \text{ and } B)$$

Pair correlation: tendency to cluster or repel relative to case where points occur independently of each other

$$g(u,v) = \frac{\rho^{(2)}(u,v)}{\rho(u)\rho(v)}$$

Suppose g(u, v) = g(u - v). K-function (cumulative quantity):

$$\mathcal{K}(t) := \int_{\mathbb{R}^2} \mathbb{1}[\|u\| \le t] g(u) \mathrm{d}u = \frac{1}{|B|} \mathbb{E} \sum_{\substack{u \in \mathbf{X} \cap B \\ v \in \mathbf{X}}}^{\neq} \frac{\mathbb{1}[\|u - v\| \le t]}{\rho(u)\rho(v)}$$

 $(\Rightarrow$ non-parametric estimation if $\rho(u)\rho(v)$ known)

10 / 69

Existence of Poisson process on \mathbb{R}^2 : use definition on disjoint partitioning $\mathbb{R}^2 = \bigcup_{i=1}^{\infty} B_i$ of bounded sets B_i .

Independent scattering:

- ▶ $A, B \subseteq \mathbb{R}^2$ disjoint \Rightarrow **X** \cap A and **X** \cap B independent
- $ho^{(2)}(u,v)=
 ho(u)
 ho(v)$ and g(u,v)=1

Characterization in terms of void probabilities

The distribution of **X** is uniquely determined by the void probabilities $P(\mathbf{X} \cap B = \emptyset)$, for bounded subsets $B \subseteq \mathbb{R}^2$.

Intuition: consider very fine subdivision of observation window – then at most one point in each cell and probabilities of absence/presence determined by void probabilities.

Hence, a point process ${\bf X}$ with intensity measure μ is a Poisson process if and only if

$$P(\mathbf{X} \cap B = \emptyset) = \exp(-\mu(B))$$

for any bounded subset B.

13 / 69

Exercises

1. Show that the covariance between counts N(A) and N(B) is given by

$$\mathbb{C}\mathrm{ov}[N(A), N(B] = \mu^{(2)}(A \times B) + \mu(A \cap B) - \mu(A)\mu(B)$$

2. Show that

$$\mathcal{K}(t) := \int_{\mathbb{R}^2} \mathbb{1}[\|u\| \leq t] g(u) \mathrm{d}u = \frac{1}{|B|} \mathbb{E} \sum_{\substack{u \in \mathbf{X} \cap B \\ v \in \mathbf{Y}}}^{\neq} \frac{\mathbb{1}[\|u - v\| \leq t]}{\rho(u)\rho(v)}$$

What is K(t) for a Poisson process ?

(Hint: use the Campbell formula)

3. (Practical spatstat exercise) Compute and interpret a non-parametric estimate of the *K*-function for the spruces data set.

(Hint: load spatstat using library(spatstat) and the spruces data using data(spruces). Consider then the Kest() function.)

Homogeneous Poisson process as limit of Bernouilli trials

Consider disjoint subdivision $W = \bigcup_{i=1}^n C_i$ where $|C_i| = |W|/n$. With probability $\rho|C_i|$ a uniform point is placed in C_i .

Number of points in subset A is $b(n|A|/|W|, \rho|W|/n)$ which converges to a Poisson distribution with mean $\rho|A|$.

Hence, Poisson process default model when points occur independently of each other.

14 / 69

Distribution and moments of Poisson process

X a Poisson process on *S* with $\mu(S) = \int_S \rho(u) du < \infty$ and *F* set of finite point configurations in *S*.

By definition of a Poisson process

$$P(\mathbf{X} \in F)$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu(S)}}{n!} \int_{S^n} 1[\{x_1, x_2, \dots, x_n\} \in F] \prod_{i=1}^n \rho(x_i) dx_1 \dots dx_n$$
(1)

Similarly,

$$\mathbb{E}h(\mathbf{X}) = \sum_{n=0}^{\infty} \frac{\mathrm{e}^{-\mu(S)}}{n!} \int_{S^n} h(\{x_1, x_2, \dots, x_n\}) \prod_{i=1}^n \rho(x_i) \mathrm{d}x_1 \dots \mathrm{d}x_n$$

Proof of independent scattering (finite case)

Consider bounded $A, B \subseteq \mathbb{R}^2$.

 $X \cap (A \cup B)$ Poisson process. Hence

$$P(\mathbf{X} \cap A \in F, \mathbf{X} \cap B \in G) \quad (\mathbf{x} = \{x_1, \dots, x_n\})$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu(A \cup B)}}{n!} \int_{(A \cup B)^n} 1[\mathbf{x} \cap A \in F, \mathbf{x} \cap B \in G] \prod_{i=1}^n \rho(x_i) dx_1 \dots dx_n$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu(A \cup B)}}{n!} \sum_{m=0}^n \frac{n!}{m!(n-m)!} \int_{A^m} 1[\{x_1, x_2, \dots, x_m\} \in F]$$

$$\int_{B^{n-m}} 1[\{x_{m+1}, \dots, x_n\} \in G] \prod_{i=1}^n \rho(x_i) dx_1 \dots dx_n$$

= (interchange order of summation and sum over m and k = n - m) $P(\mathbf{X} \cap A \in F)P(\mathbf{X} \cap B \in G)$

17 / 69

Density (likelihood) of a finite Poisson process

 \mathbf{X}_1 and \mathbf{X}_2 Poisson processes on S with intensity functions ρ_1 and ρ_2 where $\int_S \rho_2(u) \mathrm{d} u < \infty$ and $\rho_2(u) = 0 \Rightarrow \rho_1(u) = 0$. Define 0/0 := 0. Then

$$P(\mathbf{X}_{1} \in F)$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu_{1}(S)}}{n!} \int_{S^{n}} 1[\mathbf{x} \in F] \prod_{i=1}^{n} \rho_{1}(x_{i}) dx_{1} \dots dx_{n} \quad (\mathbf{x} = \{x_{1}, \dots, x_{n}\})$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu_{2}(S)}}{n!} \int_{S^{n}} 1[\mathbf{x} \in F] e^{\mu_{2}(S) - \mu_{1}(S)} \prod_{i=1}^{n} \frac{\rho_{1}(x_{i})}{\rho_{2}(x_{i})} \prod_{i=1}^{n} \rho_{2}(x_{i}) dx_{1} \dots dx_{n}$$

$$= \mathbb{E}(1[\mathbf{X}_{2} \in F] f(\mathbf{X}_{2}))$$

where

$$f(\mathbf{x}) = e^{\mu_2(S) - \mu_1(S)} \prod_{i=1}^n \frac{\rho_1(x_i)}{\rho_2(x_i)}$$

Hence f is a density of X_1 with respect to distribution of X_2 .

Superpositioning and thinning

If $\mathbf{X}_1, \mathbf{X}_2, \ldots$ are independent Poisson processes (ρ_i) , then superposition $\mathbf{X} = \bigcup_{i=1}^{\infty} \mathbf{X}_i$ is a Poisson process with intensity function $\rho = \sum_{i=1}^{\infty} \rho_i(u)$ (provided ρ integrable on bounded sets).

Conversely: Independent π -thinning of Poisson process \mathbf{X} : independent retain each point u in \mathbf{X} with probability $\pi(u)$. Thinned process \mathbf{X}_{thin} and $\mathbf{X} \setminus \mathbf{X}_{\text{thin}}$ are independent Poisson processes with intensity functions $\pi(u)\rho(u)$ and $(1-\pi(u))\rho(u)$.

(Superpositioning and thinning results most easily verified using void probability characterization of Poisson process, see M & W, 2003)

For general point process \mathbf{X} : thinned process \mathbf{X}_{thin} has product density $\pi(u)\pi(v)\rho^{(2)}(u,v)$ - hence g and K invariant under independent thinning.

18 / 69

In particular (if S bounded): X_1 has density

$$f(\mathbf{x}) = \mathrm{e}^{\int_{\mathcal{S}} (1 - \rho_1(u)) \mathrm{d}u} \prod_{i=1}^n \rho_1(x_i)$$

with respect to unit rate Poisson process ($\rho_2 = 1$).

19 / 69 20 / 69

Data example: tropical rain forest trees

Observation window $W = [0, 1000] \times [0, 500]$

Sources of variation: elevation and gradient covariates *and* possible clustering/aggregation due to unobserved covariates and/or seed dispersal.

21 / 69

Implementation in spatstat

- > bei=ppp(beilpe\$X,beilpe\$Y,xrange=c(0,1000),yrange=c(0,500))
- > beifit=ppm(bei,~elev+grad,covariates=list(elev=elevim, grad=gradim))
- > coef(beifit) #parameter estimates

(Intercept) elev gra

-4.98958664 0.02139856 5.84202684

- > asympcov=vcov(beifit) #asymp. covariance matrix
- > sqrt(diag(asympcov)) #standard errors

(Intercept) elev grad

- 0.017500262 0.002287773 0.255860860
- > rho=predict.ppm(beifit)
- > Kbei=Kinhom(bei,rho) #warning: problem with large data sets.
- > myKbei=myKest(cbind(bei\$x,bei\$y),rho,100,3,1000,500,F) #my own
 #procedure

Inhomogeneous Poisson process

Log linear intensity function

$$\rho(u; \beta) = \exp(z(u)\beta^{\mathsf{T}}), \quad z(u) = (1, z_{\mathsf{elev}}(u), z_{\mathsf{grad}}(u))$$

Estimate β from Poisson log likelihood (spatstat)

$$\sum_{u \in \mathbf{X} \cap W} z(u)\beta^{\mathsf{T}} - \int_{W} \exp(z(u)\beta^{\mathsf{T}}) \mathrm{d}u \quad (W = \text{ observation window})$$

Model check using edge-corrected estimate of *K*-function

$$\hat{K}(t) = \sum_{u,v \in \mathbf{X} \cap W}^{\neq} \frac{1[\|u - v\| \le t]}{\rho(u; \hat{\beta})\rho(v; \hat{\beta})|W \cap W_{u - v}|}$$

 W_{u-v} translated version of W. |A|: area of $A \subset \mathbb{R}^2$.

22 / 69

K-functions

Poisson process: $K(t) = \pi t^2$ (since g = 1) less than K functions for data. Hence Poisson process models not appropriate.

23 / 69 24 / 69

- 1. Check that the Poisson expansion (1) indeed follows from the definition of a Poisson process.
- 2. Compute the second order product density for a Poisson process **X**.

(Hint: compute second order factorial measure using the Poisson expansion for $\mathbf{X} \cap (A \cup B)$ for bounded $A, B \subseteq \mathbb{R}^2$.)

3. (if time) Assume that **X** has second order product density $\rho^{(2)}$ and show that g (and hence K) is invariant under independent thinning (note that a heuristic argument follows easy from the infinitesimal interpretation of $\rho^{(2)}$).

(Hint: introduce random field $\mathbf{R} = \{R(u) : u \in \mathbb{R}^2\}$, of independent uniform random variables on [0,1], and independent of \mathbf{X} , and compute second order factorial measure for thinned process $\mathbf{X}_{\text{thin}} = \{u \in \mathbf{X} | R(u) \leq p(u)\}$.)

25 / 69

Solution: invariance of g (and K) under thinning

Since
$$\mathbf{X}_{thin} = \{u \in \mathbf{X} : R(u) \leq p(u)\},\$$

$$\mathbb{E} \sum_{u,v \in \mathbf{X}_{\text{thin}}}^{\neq} 1[u \in A, v \in B]$$

$$= \mathbb{E} \sum_{u,v \in \mathbf{X}}^{\neq} 1[R(u) \le p(u), R(v) \le p(v), u \in A, v \in B]$$

$$= \mathbb{E} \mathbb{E} \left[\sum_{u,v \in \mathbf{X}}^{\neq} 1[R(u) \le p(u), R(v) \le p(v), u \in A, v \in B] \mid \mathbf{X} \right]$$

$$= \mathbb{E} \sum_{u,v \in \mathbf{X}}^{\neq} p(u)p(v)1[u \in A, v \in B]$$

$$= \int_{A}^{\neq} \int_{B} p(u)p(v)\rho^{(2)}(u, v) du dv$$

Solution: second order product density for Poisson

$$\mathbb{E} \sum_{u,v \in \mathbf{X}}^{\neq} 1[u \in A, v \in B]$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu(A \cup B)}}{n!} \int_{(A \cup B)^n} \sum_{u,v \in \mathbf{X}}^{\neq} 1[u \in A, v \in B] \prod_{i=1}^n \rho(x_i) dx_1 \dots dx_n$$

$$= \sum_{n=2}^{\infty} \frac{e^{-\mu(A \cup B)}}{n!} 2\binom{n}{2} \int_{(A \cup B)^n} \int_{(A \cup B)^n} 1[x_1 \in A, x_2 \in B] \prod_{i=1}^n \rho(x_i) dx_1 \dots dx_n$$

$$= \sum_{n=2}^{\infty} \frac{e^{-\mu(A \cup B)}}{(n-2)!} \mu(A) \mu(B) \mu(A \cup B)^{n-2}$$

$$= \mu(A) \mu(B) = \int_{A \times B} \rho(u) \rho(v) du dv$$

26 / 69

- 1. Intro to point processes, moment measures and the Poisson proces
- 2. Cox and cluster processes
- 3. The conditional intensity and Markov point processes
- 4. Likelihood-based inference and MCMC

27 / 69 28 / 69

Cox processes

X is a *Cox process* driven by the random intensity function Λ if, conditional on $\Lambda = \lambda$, **X** is a Poisson process with intensity function λ .

Calculation of intensity and product density:

$$\rho(u) = \mathbb{E}\Lambda(u), \quad \rho^{(2)}(u, v) = \mathbb{E}[\Lambda(u)\Lambda(v)]$$

$$\mathbb{C}\text{ov}(\Lambda(u), \Lambda(v)) > 0 \Leftrightarrow g(u, v) > 1$$
 (clustering)

Overdispersion for counts:

$$\operatorname{Var} N(A) = \operatorname{\mathbb{E}Var}[N(A) \mid \Lambda] + \operatorname{Var} \mathbb{E}[N(A) \mid \Lambda] = \operatorname{\mathbb{E}} N(A) + \operatorname{Var} \mathbb{E}[N(A) \mid \Lambda]$$

29 / 69

Two simulated homogeneous LGCP's

Exponential covariance function

Gaussian covariance function

Log Gaussian Cox process (LGCP)

- ▶ Poisson log linear model: $\log \rho(u) = z(u)\beta^{\mathsf{T}}$
- ▶ LGCP: in analogy with random effect models, take

$$\log \Lambda(u) = z(u)\beta^{\mathsf{T}} + \Psi(u)$$

where $\Psi = (\Psi(u))_{u \in \mathbb{R}^2}$ is a zero-mean Gaussian process

▶ Often sufficient to use power exponential covariance functions:

$$c(u, v) \equiv \mathbb{C}\text{ov}[\Psi(u), \Psi(v)] = \sigma^2 \exp\left(-\|u - v\|^{\delta}/\alpha\right),$$

 $\sigma, \alpha > 0, \ 0 \le \delta \le 2$ (or linear combinations)

► Tractable product densities

$$\rho(u) = \mathbb{E}\Lambda(u) = e^{z(u)\beta^{\mathsf{T}}} \mathbb{E}e^{\Psi(u)} = \exp\left(z(u)\beta^{\mathsf{T}} + c(u,u)/2\right)$$

$$g(u, v) = \frac{\mathbb{E}\left[\Lambda(u)\Lambda(v)\right]}{\rho(u)\rho(v)} = \ldots = \exp(c(u, v))$$

30 / 69

Cluster processes

M 'mother' point process of cluster centres. Given **M**, \mathbf{X}_m , $m \in M$ are 'offspring' point processes (clusters) centered at m.

Intensity function for \mathbf{X}_m : $\alpha f(m, u)$ where f probability density and α expected size of cluster.

Cluster process:

$$X = \cup_{m \in M} X_m$$

By superpositioning: if cond. on \mathbf{M} , the \mathbf{X}_m are independent Poisson processes, then \mathbf{X} Cox process with random intensity function

$$\Lambda(u) = \alpha \sum_{m \in \mathbf{M}} f(m, u)$$

Nice expressions for intensity and product density if **M** Poisson on \mathbb{R}^2 with intensity function $\rho(\cdot)$ (Campbell):

$$\mathbb{E}\Lambda(u) = \mathbb{E}\alpha \sum_{m \in \mathbf{M}} f(m, u) = \alpha \int f(m, u) \rho(m) dm \quad (= \kappa \alpha \text{ if } \rho(\cdot) = \kappa$$
and $f(m, u) = f(u - m)$

Example: modified Thomas process

Mothers (crosses) stationary Poisson point process ${\bf M}$ with intensity $\kappa>0$.

Offspring $\mathbf{X} = \bigcup_m \mathbf{X}_m$ distributed around mothers according to bivariate isotropic Gaussian density f.

 ω : standard deviation of Gaussian density

 $\alpha \!\!:\!$ Expected number of offspring for each mother.

Cox process with random intensity function:

$$\Lambda(u) = \alpha \sum_{m \in \mathbf{M}} f(u - m; \omega)$$

33 / 69

Density of a Cox process

▶ Restricted to a bounded region *W*, the density is

$$f(\mathbf{x}) = \mathbb{E}\left[\exp\left(|W| - \int_{W} \Lambda(u) \,\mathrm{d}u\right) \prod_{u \in \mathbf{X}} \Lambda(u)\right]$$

- ▶ Not on closed form
- ► Fourth lecture: likelihood-based inference (missing data MCMC approach)
- ▶ Now: simulation free estimation

Inhomogeneous Thomas process

 $z_{1:p}(u) = (z_1(u), \dots, z_p(u))$ vector of p nonconstant covariates. $\beta_{1:p} = (\beta_1, \dots, \beta_p)$ regression parameter.

Random intensity function:

$$\Lambda(u) = \alpha \exp(z(u)_{1:p}\beta_{1:p}^{\mathsf{T}}) \sum_{m \in \mathsf{M}} f(u - m; \omega)$$

Rain forest example:

$$z_{1:2}(u) = (z_{\text{elev}}(u), z_{\text{grad}}(u))$$

elevation/gradient covariate.

34 / 69

Parameter Estimation: regression parameters

Intensity function for inhomogeneous Thomas ($\rho(\cdot) = \kappa$):

$$\rho_{\beta}(u) = \kappa \alpha \exp(z(u)_{1:p} \beta_{1:p}^{\mathsf{T}}) = \exp(z(u)\beta^{\mathsf{T}})$$
$$z(u) = (1, z_{1:p}(u)) \quad \beta = (\log(\kappa \alpha), \beta_{1:p})$$

Consider indicators $N_i = \mathbf{1}[\mathbf{X} \cap C_i \neq \emptyset]$ of occurrence of points in disjoint C_i ($W = \cup C_i$) where $P(N_i = 1) \approx \rho_{\beta}(u_i) \mathrm{d}C_i$, $u_i \in C_i$

Limit $(dC_i \rightarrow 0)$ of composite log likelihood

$$\prod_{i=1}^{n} (\rho_{\beta}(u_{i}) dC_{i})^{N_{i}} (1 - \rho_{\beta}(u_{i}) dC_{i})^{1 - N_{i}} \equiv \prod_{i=1}^{n} \rho_{\beta}(u_{i})^{N_{i}} (1 - \rho_{\beta}(u_{i}) dC_{i})^{1 - N_{i}}$$

ic

$$I(\beta) = \sum_{u \in \mathbf{X} \cap W} \log \rho(u; \beta) - \int_{W} \rho(u; \beta) du$$

Maximize using spatstat to obtain $\hat{\beta}$.

Asymptotic distribution of regression parameter estimates

Assume increasing mother intensity: $\kappa = \kappa_n = n\tilde{\kappa} \to \infty$ and $\mathbf{M} = \bigcup_{i=1}^n \mathbf{M}_i$, \mathbf{M}_i independent Poisson processes of intensity $\tilde{\kappa}$.

Score function asymptotically normal:

$$\frac{1}{\sqrt{n}} \frac{\mathrm{d}l(\beta)}{\mathrm{d}\log\alpha\mathrm{d}\beta_{1:p}} = \frac{1}{\sqrt{n}} \left(\sum_{u \in \mathbf{X} \cap W} z(u) - n\tilde{\kappa}\alpha \int_{W} z(u) \exp(z(u)_{1:p}\beta_{1:p}^{\mathsf{T}}) \mathrm{d}u \right)$$

$$= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left[\sum_{m \in \mathbf{M}_{i}} \sum_{u \in \mathbf{X}_{m} \cap W} z(u) - \tilde{\kappa} \alpha \int_{W} \exp(z_{1:p}(u) \beta_{1:p}^{\mathsf{T}}) du \right] \approx N(0, V)$$

where $V = \mathbb{V}ar \sum_{m \in \mathbf{M}_i} \sum_{u \in \mathbf{X}_m \cap W} z(u)$ (\mathbf{X}_m offspring for mother m).

By standard results for estimating functions (J observed information for Poisson likelihood):

$$\sqrt{\kappa_n} [(\log(\hat{\alpha}), \hat{\beta}_{1:p}) - (\log \alpha, \beta_{1:p})] \approx N(0, J^{-1}VJ^{-1})$$

37 / 69

Results for Beilschmiedia

Parameter estimates and confidence intervals (Poisson in red).

Elevation	Gradient	κ	α	ω
0.02 [-0.02,0.06]	5.84 [0.89,10.80]	8e-05	85.9	20.0
[0.02,0.03]	[5.34,6.34]			

Clustering: less information in data and wider confidence intervals than for Poisson process (independence).

Evidence of positive association between gradient and Beilschmiedia intensity.

Parameter Estimation: clustering parameters

Theoretical expression for (inhomogeneous) *K*-function:

$$K(t; \kappa, \omega) = \pi t^2 + (1 - \exp(-t^2/(2\omega)^2))/\kappa.$$

Estimate κ and ω by matching theoretical K with semi-parametric estimate (minimum contrast)

$$\hat{\mathcal{K}}(t) = \sum_{u,v \in \mathbf{X} \cap W}^{\neq} \frac{1[\|u-v\| \leq t]}{\lambda(u;\hat{eta})\lambda(v;\hat{eta})|W \cap W_{u-v}|}$$

38 / 69

Generalisations

▶ Shot noise Cox processes driven by $\Lambda(u) = \sum_{(c,\gamma) \in \Phi} \gamma k(c,u)$ where $c \in \mathbb{R}^2$, $\gamma > 0$ (Φ = marked Poisson process)

Generalized SNCP's... (Møller & Torrisi, 2005)

1. For a Cox process with random intensity function Λ , show that

$$\rho(u) = \mathbb{E}\Lambda(u), \quad \rho^{(2)}(u, v) = \mathbb{E}[\Lambda(u)\Lambda(v)]$$

2. Show that a cluster process with Poisson number of iid offspring is a Cox process with random intensity function

$$\Lambda(u) = \alpha \sum_{m \in \mathbf{M}} f(m, u)$$

(using notation from previous slide on cluster processes. Hint: use void probability characterisation.

- 3. Compute the intensity and second-order product density for an inhomogeneous Thomas process.
 - (Hint: interpret the Thomas process as a Cox process and use the Campbell formula)

41 / 69

Density with respect to a Poisson process

 ${\bf X}$ on bounded S has density f with respect to unit rate Poisson ${\bf Y}$ if

$$P(\mathbf{X} \in F) = \mathbb{E}(1[\mathbf{Y} \in F]f(\mathbf{Y}))$$

$$= \sum_{n=0}^{\infty} \frac{e^{-|S|}}{n!} \int_{S^n} 1[\mathbf{x} \in F]f(\mathbf{x}) dx_1 \dots dx_n \quad (\mathbf{x} = \{x_1, \dots, x_n\})$$

- 1. Intro to point processes, moment measures and the Poisson process
- Cox and cluster processes
- 3. The conditional intensity and Markov point processes
- 4. Likelihood-based inference and MCMC

42 / 69

Example: Strauss process

For a point configuration \mathbf{x} on a bounded region S, let $n(\mathbf{x})$ and $s(\mathbf{x})$ denote the number of points and number of (unordered) pairs of R-close points ($R \ge 0$).

A Strauss process **X** on S has density

$$f(\mathbf{x}) = \frac{1}{c} \exp(\beta n(\mathbf{x}) + \psi s(\mathbf{x}))$$

with respect to a unit rate Poisson process ${\bf Y}$ on ${\bf S}$ and

$$c = \mathbb{E} \exp(\beta n(\mathbf{Y}) + \psi s(\mathbf{Y})) \tag{2}$$

is the normalizing constant (unknown).

Note: only well-defined $(c < \infty)$ if $\psi \le 0$.

43 / 69 44 / 69

Intensity and conditional intensity

Suppose \mathbf{X} has *hereditary* density f with respect to Y:

$$f(\mathbf{x}) > 0 \Rightarrow f(\mathbf{y}) > 0, \mathbf{y} \subset \mathbf{x}.$$

Intensity function $\rho(u) = \mathbb{E}f(\mathbf{Y} \cup \{u\})$ usually unknown (except for Poisson and Cox/Cluster).

Instead consider conditional intensity

$$\lambda(u,\mathbf{x}) = \frac{f(\mathbf{x} \cup \{u\})}{f(\mathbf{x})}$$

(does not depend on normalizing constant!)

Note

$$\rho(u) = \mathbb{E} f(\mathbf{Y} \cup \{u\}) = \mathbb{E} \big[\lambda(u, \mathbf{Y}) f(\mathbf{Y}) \big] = \mathbb{E} \lambda(u, \mathbf{X})$$

and

 $\rho(u)dA \approx P(\mathbf{X} \text{ has a point in } A) = \mathbb{E}P(\mathbf{X} \text{ has a point in } A|\mathbf{X}\backslash A), u \in A$

Hence, $\lambda(u, \mathbf{X}) dA$ probability that \mathbf{X} has point in very small region A given \mathbf{X} outside A.

45 / 69

Modelling the conditional intensity function

Suppose we specify a model for the conditional intensity. Two questions:

- 1. does there exist a density *f* with the specified conditional intensity ?
- 2. is f well-defined (integrable)?

Solution:

- 1. find *f* by identifying interaction potentials (Hammersley-Clifford) or guess *f*.
- 2. sufficient condition (local stability): $\lambda(u, \mathbf{x}) \leq K$

NB some Markov point processes have interactions of any order in which case H-C theorem is less useful (e.g. area-interaction process).

Markov point processes

Def: suppose that f hereditary and $\lambda(u, \mathbf{x})$ only depends on \mathbf{x} through $\mathbf{x} \cap b(u, R)$ for some R > 0 (local Markov property). Then f is Markov with respect to the R-close neighbourhood relation.

Thm (Hammersley-Clifford) The following are equivalent.

1. f is Markov.

2.

$$f(\mathbf{x}) = \prod_{\mathbf{y} \subseteq \mathbf{x}} \phi(\mathbf{y})$$

where $\phi(\mathbf{y}) = 1$ whenever $||u - v|| \ge R$ for some $u, v \in \mathbf{y}$.

Pairwise interaction process: $\phi(\mathbf{y}) = 1$ whenever $n(\mathbf{y}) > 2$.

NB: in H-C, *R*-close neighbourhood relation can be replaced by an arbitrary symmetric relation between pairs of points.

46 / 69

Some examples

Strauss (pairwise interaction):

$$\lambda(u,\mathbf{x}) = \exp\left(\beta + \psi \sum_{v \in \mathbf{x}} 1[\|u - v\| \le R]\right), \quad f(\mathbf{x}) = \frac{1}{c} \exp\left(\beta n(\mathbf{x}) + \psi s(\mathbf{x})\right) \quad (\psi \le 0)$$

Overlap process (pairwise interaction marked point process):

$$\lambda((u,m),\mathbf{x}) = \frac{1}{c} \exp\left(\beta + \psi \sum_{(u',m')\in\mathbf{x}} |b(u,m) \cap b(u',m')|\right) \quad (\psi \le 0)$$

where
$$\mathbf{x} = \{(u_1, m_1), \dots, (u_n, m_n)\}$$
 and $(u_i, m_i) \in \mathbb{R}^2 \times [a, b]$.

Area-interaction process:

$$f(\mathbf{x}) = \frac{1}{c} \exp \left(\beta n(\mathbf{x}) + \psi V(\mathbf{x})\right), \quad \lambda(u, \mathbf{x}) = \exp \left(\beta + \psi (V(\{u\} \cup \mathbf{x}) - V(\mathbf{x}))\right)$$

$$V(\mathbf{x}) = |\bigcup_{u \in \mathbf{x}} b(u, R/2)|$$
 is area of union of balls $b(u, R/2)$, $u \in \mathbf{x}$.

NB: $\phi(\cdot)$ complicated for area-interaction process.

The Georgii-Nguyen-Zessin formula ('Law of total probability')

$$\mathbb{E} \sum_{u \in \mathbf{X}} k(u, \mathbf{X} \setminus \{u\}) = \int_{\mathcal{S}} \mathbb{E}[\lambda(u, \mathbf{X}) k(u, \mathbf{X})] du = \int_{\mathcal{S}} \mathbb{E}^{!}[k(u, \mathbf{X}) \mid u] \rho(u) du$$

 $\mathbb{E}^![\cdot \mid u]$: expectation with respect to the conditional distribution of $\mathbf{X} \setminus \{u\}$ given $u \in \mathbf{X}$ (reduced Palm distribution)

Density of reduced Palm distribution:

$$f(\mathbf{x} \mid u) = f(\mathbf{x} \cup \{u\})/\rho(u)$$

NB: GNZ formula holds in general setting for point process on \mathbb{R}^d .

Useful e.g. for residual analysis.

49 / 69

Pseudo-likelihood estimates asymptotically normal but asymptotic variance must be found by parametric bootstrap.

Flexible implementation for log linear conditional intensity (fixed R) in spatstat

Estimation of interaction range R: profile likelihood (?)

Statistical inference based on pseudo-likelihood

x observed within bounded *S*. Parametric model $\lambda_{\theta}(u, \mathbf{x})$.

Let $N_i = 1[\mathbf{x} \cap C_i \neq \emptyset]$ where C_i disjoint partitioning of $S = \bigcup_i C_i$.

 $P(N_i = 1 \mid \mathbf{X} \cap S \setminus C_i) \approx \lambda_{\theta}(u_i, \mathbf{X}) dC_i$ where $u_i \in C_i$. Hence composite likelihood based on the N_i :

$$\prod_{i=1}^n (\lambda_{\theta}(u_i, \mathbf{x}) dC_i)^{N_i} (1 - \lambda_{\theta}(u_i, \mathbf{x}) dC_i)^{1-N_i} \equiv \prod_{i=1}^n \lambda_{\theta}(u_i, \mathbf{x})^{N_i} (1 - \lambda_{\theta}(u_i, \mathbf{x}) dC_i)^{1-N_i}$$

which tends to pseudo likelihood function

$$\prod_{u \in \mathbf{x}} \lambda_{\theta}(u, \mathbf{x}) \exp \left(-\int_{S} \lambda_{\theta}(u, \mathbf{x}) du\right)$$

Score of pseudo-likelihood: unbiased estimating function by GNZ.

50 / 69

The spatial Markov property and edge correction

Let $B \subset S$ and assume **X** Markov with interaction radius R.

Define: ∂B points in $S \setminus B$ of distance less than R

Factorization (Hammersley-Clifford):

$$f(\mathbf{x}) = \prod_{\mathbf{y} \subseteq \mathbf{x} \cap (B \cup \partial B)} \phi(\mathbf{y}) \prod_{\substack{\mathbf{y} \subseteq \mathbf{x} \setminus B: \\ \mathbf{y} \cap S \setminus (B \cup \partial B) \neq \emptyset}} \phi(\mathbf{y})$$

Hence, conditional density of $X \cap B$ given $X \setminus B$

$$f_B(\mathbf{z}|\mathbf{y}) \propto f(\mathbf{z} \cup \mathbf{y})$$

depends on \mathbf{v} only through $\partial B \cap \mathbf{v}$.

Edge correction using the border method

Suppose we observe **x** realization of $\mathbf{X} \cap W$ where $W \subset S$.

Problem: density (likelihood) $f_W(\mathbf{x}) = \mathbb{E}f(\mathbf{x} \cup Y_{S \setminus W})$ unknown.

Border method: base inference on

$$f_{W_{\ominus R}}(\mathbf{x} \cap W_{\ominus R}|\mathbf{x} \cap (W \setminus W_{\ominus R}))$$

i.e. conditional density of $\mathbf{X} \cap W_{\ominus R}$ given \mathbf{X} outside $W_{\ominus R}$.

53 / 69

55 / 69

Strauss model for spruces

- > fit=ppm(unmark(spruces),~1,Strauss(r=2),rbord=2)
- > coef(fit)

(Intercept) Interaction

- -1.987940 -1.625994
- > summary(fit)#details of model fitting
- > simpoints=rmh(fit)#simulate point pattern from fitted model
- > Kenvestrauss=envelope(fit,nrank=2)

Example: spruces

Check fit of a homogeneous Poisson process using K-function and simulations:

- > library(spatstat)
- > data(spruces)
- > plot(Kest(spruces)) #estimate K function
- > Kenve=envelope(spruces,nrank=2)# envelopes "alpha"=4 % Generating 99 simulations of CSR ...

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

.

54 / 69

Exercises

1. Suppose that S contains a disc of radius $\epsilon \leq R/2$. Show that (2) is not finite, and hence the Strauss process not well-defined, when ψ is positive.

(Hint:
$$\sum_{n=0}^{\infty} \frac{(\pi \epsilon^2)^n}{n!} \exp(n\beta + \psi n(n-1)/2) = \infty$$
 if $\psi > 0$.)
2. Show that local stability for a spatial point process density

- Show that local stability for a spatial point process density ensures integrability. Verify that the area-interaction process is locally stable.
- 3. (spatstat) The multiscale process is an extension of the Strauss process where the density is given by

$$f(\mathbf{x}) \propto \exp(\beta n(\mathbf{x}) + \sum_{m=1}^{k} \psi_m s_m(\mathbf{x}))$$

where $s_m(\mathbf{x})$ is the number of pairs of points u_i, u_j with $\|u_i - u_j\| \in]r_{m-1}, r_m]$ where $0 = r_0 < r_1 < r_2 < \cdots < r_k$. Fit a multiscale process with k = 4 and of interaction range $r_k = 5$ to the spruces data. Check the model using the K-function.

(Hint: use the spatstat function ppm with the PairPiece potential. The function envelope can be used to compute envelopes for the K-function under the fitted model.)

- 4. (if time) Verify the Georgii-Nguyen-Zessin formula for a finite point process.
 - (Hint: consider first the case of a finite Poisson-process \mathbf{Y} in which case the identity is known as the Slivnyak-Mecke theorem, next apply $\mathbb{E}g(\mathbf{X}) = \mathbb{E}[g(\mathbf{Y})f(\mathbf{Y})]$.)
- 5. (if time) Check using the GNZ formula, that the score of the pseudo-likelihood is an unbiased estimating function.

57 / 69

Maximum likelihood inference for point processes

Concentrate on point processes specified by unnormalized density $h_{\theta}(\mathbf{x})$,

$$f_{ heta}(\mathbf{x}) = \frac{1}{c(heta)} h_{ heta}(\mathbf{x})$$

Problem: $c(\theta)$ in general unknown \Rightarrow unknown log likelihood

$$I(\theta) = \log h_{\theta}(\mathbf{x}) - \log c(\theta)$$

- 1. Intro to point processes, moment measures and the Poisson proces
- Cox and cluster processes
- 3. The conditional intensity and Markov point processes
- 4. Likelihood-based inference and MCMC

Importance sampling

Importance sampling: θ_0 fixed reference parameter:

$$I(\theta) \equiv \log h_{\theta}(\mathbf{x}) - \log \frac{c(\theta)}{c(\theta_0)}$$

58 / 69

and

$$rac{c(heta)}{c(heta_0)} = \mathbb{E}_{ heta_0} rac{h_{ heta}(\mathbf{X})}{h_{ heta_0}(\mathbf{X})}$$

Hence

$$rac{c(heta)}{c(heta_0)} pprox rac{1}{m} \sum_{i=0}^{m-1} rac{h_{ heta}(\mathbf{X}^i)}{h_{ heta_0}(\mathbf{X}^i)}$$

where $\mathbf{X}^0, \mathbf{X}^1, \dots$, sample from f_{θ_0} (later).

59 / 69 60 / 69

Exponential family case

$$h_{\theta}(\mathbf{x}) = exp(t(\mathbf{x})\theta^{\mathsf{T}})$$

$$I(\theta) = t(\mathbf{x})\theta^{\mathsf{T}} - \log c(\theta)$$

$$\frac{c(\theta)}{c(\theta_0)} = \mathbb{E}_{\theta_0} \exp(t(\mathbf{X})(\theta - \theta_0)^\mathsf{T})$$

Caveat: unless $\theta - \theta_0$ 'small', $\exp(t(\mathbf{X})(\theta - \theta_0)^{\mathsf{T}})$ has very large variance in many cases (e.g. Strauss).

61 / 69

Maximisation of likelihood (exp. family case)

Score and observed information:

$$u(\theta) = t(\mathbf{x}) - \mathbf{E}_{\theta} t(\mathbf{X}), \quad j(\theta) = \mathbf{Var}_{\theta} t(\mathbf{X}),$$

Newton-Rahpson iterations:

$$\theta^{m+1} = \theta^m + u(\theta^m)i(\theta^m)^{-1}$$

Monte Carlo approximation of score and observed information: use importance sampling formula

$$\mathrm{E}_{ heta}k(\mathbf{X}) = \mathrm{E}_{ heta_0}\left[k(\mathbf{X})\exp\left(t(\mathbf{X})(heta- heta_0)^\mathsf{T}
ight)
ight]/(c_{ heta}/c_{ heta_0})$$

with $k(\mathbf{X})$ given by $t(\mathbf{X})$ or $t(\mathbf{X})^{\mathsf{T}}t(\mathbf{X})$.

Path sampling (exp. family case)

Derivative of cumulant transform:

$$rac{\mathrm{d}}{\mathrm{d} heta}\lograc{c(heta)}{c(heta_0)}=\mathbb{E}_{ heta}t(\mathbf{X})$$

Hence, by integrating over differentiable path $\theta(t)$ (e.g. line) linking θ_0 and θ_1 :

$$\log \frac{c(\theta_1)}{c(\theta_0)} = \int_0^1 \mathbf{E}_{\theta(s)}[t(\mathbf{X})] \frac{\mathrm{d}\theta(s)^\mathsf{T}}{\mathrm{d}s} \mathrm{d}s$$

Approximate $E_{\theta(s)}t(\mathbf{X})$ by Monte Carlo and \int_0^1 by numerical quadrature (e.g. trapezoidal rule).

NB Monte Carlo approximation on log scale more stable.

62 / 69

MCMC simulation of spatial point processes

Birth-death Metropolis-Hastings algorithm for generating ergodic sample X^0, X^1, \ldots from locally stable density f on S:

Suppose current state is \mathbf{X}^{i} , $i \geq 0$.

- 1. Either: with probability 1/2
 - ▶ (birth) generate new point u uniformly on S and accept $\mathbf{X}^{\text{prop}} = \mathbf{X}^{i} \cup \{u\}$ with probability

$$\min\Big\{1,\frac{f(\mathbf{X}^i\cup\{u\})|S|}{f(\mathbf{X}^i)(n+1)}\Big\}$$

or

• (death) select uniformly a point $u \in \mathbf{X}^i$ and accept $\mathbf{X}^{\mathsf{prop}} = \mathbf{X}^i \setminus \{u\}$ with probability

$$\min\left\{1, \frac{f(\mathbf{X}^i \setminus \{u\})n}{f(\mathbf{X}^i)|S|}\right\}$$

(if $\mathbf{X}^i = \emptyset$ do nothing)

2. if accept $\mathbf{X}^{i+1} = \mathbf{X}^{\text{prop}}$; otherwise $\mathbf{X}^{i+1} = \mathbf{X}^{i}$.

Initial state \mathbf{X}_0 : arbitrary (e.g. empty or simulation from Poisson process).

Note: Metropolis-Hastings ratio does not depend on normalizing constant:

$$\frac{f(\mathbf{X}^i \cup \{u\})|S|}{f(\mathbf{X}^i)(n+1)} = \lambda(u, \mathbf{X}^i) \frac{|S|}{(n+1)}$$

Generated Markov chain $\mathbf{X}_0, \mathbf{X}_1, \ldots$ irreducible and aperiodic and hence ergodic: $\frac{1}{m} \sum_{i=0}^{m-1} k(\mathbf{X}^i) \to \mathbb{E} k(\mathbf{X})$

Moreover, geometrically ergodic and CLT:

$$\sqrt{m}\Big(\frac{1}{m}\sum_{i=0}^{m-1}k(\mathbf{X}^i)-\mathbb{E}k(\mathbf{X})\Big)\to N(0,\sigma_k^2)$$

65 / 69

Likelihood-based inference for Cox/Cluster processes

Consider Cox/cluster process X with random intensity function

$$\Lambda(u) = \alpha \sum_{m \in \mathbf{M}} f(m, u)$$

observed within W (**M** Poisson with intensity κ).

Assume $f(m,\cdot)$ of bounded support and choose bounded $ilde{W}$ so that

$$\Lambda(u) = \alpha \sum_{m \in M \cap \tilde{W}} f(m, u) \quad \text{ for } u \in W$$

 $(\mathbf{X} \cap W, \mathbf{M} \cap \tilde{W})$ finite point process with density:

$$f(\mathbf{x}, \mathbf{m}; \theta) = f(\mathbf{m}; \theta) f(\mathbf{x}|\mathbf{m}; \theta) = e^{|\tilde{W}|(1-\kappa)} \kappa^{n(\mathbf{m})} e^{|W| - \int_{W} \Lambda(u) du} \prod_{u \in \mathbf{x}} \Lambda(u)$$

Missing data

Suppose we observe \mathbf{x} realization of $\mathbf{X} \cap W$ where $W \subset S$. Problem: likelihood (density of $\mathbf{X} \cap W$)

$$f_{W,\theta}(\mathbf{x}) = \mathbb{E} f_{\theta}(\mathbf{x} \cap \mathbf{Y}_{S \setminus W})$$

not known - not even up to proportionality ! (\mathbf{Y} unit rate Poisson on S)

Possibilities:

- ▶ Monte Carlo methods for missing data.
- Conditional likelihood

$$f_{W_{\ominus R}, \theta}(\mathbf{x} \cap W_{\ominus R} | \mathbf{x} \cap (W \setminus W_{\ominus R})) \propto \exp(t(\mathbf{x})\theta^{\mathsf{T}})$$

(note:
$$\mathbf{x} \cap (W \setminus W_{\ominus R})$$
 fixed in $t(\mathbf{x})$)

66 / 69

Likelihood

$$L(\theta) = \mathbb{E}_{\theta} f(\mathbf{x}|\mathbf{M}) = L(\theta_0) \mathbb{E}_{\theta_0} \Big[\frac{f(\mathbf{x}, \mathbf{M} \cap \tilde{W}; \theta)}{f(\mathbf{x}, \mathbf{M} \cap \tilde{W}; \theta_0)} \, \Big| \, \mathbf{X} \cap W = \mathbf{x} \Big]$$

- + derivatives can be estimated using importance sampling/MCMC
- however more difficult than for Markov point processes.

Bayesian inference: introduce prior $p(\theta)$ and sample posterior

$$p(\theta, \mathbf{m}|\mathbf{x}) \propto f(\mathbf{x}, \mathbf{m}; \theta) p(\theta)$$

(data augmentation) using birth-death MCMC.

1. Check the importance sampling formulas

$$\mathrm{E}_{ heta}k(\mathbf{X}) = \mathrm{E}_{ heta_0}\left[k(\mathbf{X})rac{h_{ heta}(\mathbf{X})}{h_{ heta_0}(\mathbf{X})}
ight]/(c_{ heta}/c_{ heta_0})$$

and

$$\frac{c(\theta)}{c(\theta_0)} = \mathbb{E}_{\theta_0} \frac{h_{\theta}(\mathbf{X})}{h_{\theta_0}(\mathbf{X})} \tag{3}$$

2. Show that the formula

$$L(\theta)/L(\theta_0) = \mathbb{E}_{\theta_0} \Big[\frac{f(\mathbf{x}, \mathbf{M} \cap \tilde{W}; \theta)}{f(\mathbf{x}, \mathbf{M} \cap \tilde{W}; \theta_0)} \, \Big| \, \mathbf{X} \cap W = \mathbf{x} \Big]$$

follows from (3) by interpreting $L(\theta)$ as the normalizing constant of $f(\mathbf{m}|\mathbf{x};\theta) \propto f(\mathbf{x},\mathbf{m};\theta)$.

3. (practical exercise) Compute MLEs for a multiscale process applied to the spruces data. Use the newtonraphson.mpp() procedure in the package MppMLE.