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Background: Tropical rain forest ecology

Fundamental questions: which factors influence the spatial
distribution of rain forest trees and what is the reason for the high
biodiversity of rain forests ?

» environment: topography, soil composition,...
» seed dispersal limitation: by wind, birds or mammals...

» competition between species
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Example: Capparis Frondosa

» observation window W
= 1000 m x 500 m

» seed dispersal= clustering

» environment =
inhomogeneity
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-10 0

-20

Elevation Potassium content in soil.

Quantify dependence on environmental variables and seed dispersal
using statistics for spatial point processes.



Outline of talk

Outline:

» Background on spatial point processes
» Summary statistics: intensity, pair correlation,...
» Cox and cluster point process models

» Estimation

» Application: clustering and seed dispersal

» Work in progress: decomposition of variance for Cox point
processes
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Intensity function and product density

Point process X: random point pattern
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Intensity function and product density

Point process X: random point pattern

Intensity function of point process X

p(u)|A|l = P(X has a point in A),

ue A
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Intensity function and product density

Point process X: random point pattern

Intensity function of point process X

p(u)|Al = P(X has a pointin A), uecA

Second order product density

p@ (u, v)|A||B| ~ P(X has a point in each of Aand B) uc A, veB

50



Pair correlation and K-function
Pair correlation function

PP (u,v)
p(u)p(v)
NB: independent points = p®)(u,v) = p(u)p(v) = g(u,v) =1

g(uv V) =
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Pair correlation and K-function
Pair correlation function

PP (u,v)
p(u)p(v)
NB: independent points = p®)(u,v) = p(u)p(v) = g(u,v) =1

g(uv V) =

K-function

K(t) = /”h||<tg(h)dh

(provided g(u,v) = g(u — v) i.e. X second-order reweighted
stationary, Baddeley, Mgller, Waagepetersen, 2000)

50



Pair correlation and K-function
Pair correlation function

PP (u,v)
p(u)p(v)
NB: independent points = p®)(u,v) = p(u)p(v) = g(u,v) =1

g(uv V) =

K-function

K(t) = /”h||<tg(h)dh

(provided g(u,v) = g(u — v) i.e. X second-order reweighted
stationary, Baddeley, Mgller, Waagepetersen, 2000)
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Parametric models for intensity and pair correlation
Study influence of covariates

Z(u) = (Z1(u), ..., Zy(u))

using log-linear model for intensity function:

log p(u; B) = BZ(u)" & p(u; B) = exp(BZ(u)")
where

ﬁZ(U)T = ﬁlZl(u) + /32ZQ(U) + ...+ ﬁpr(u)
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Parametric models for intensity and pair correlation
Study influence of covariates

Z(u) = (Z1(u), ..., Zy(u))
using log-linear model for intensity function:
log p(u; 8) = BZ(u)T & p(u; B) = exp(BZ(u)")
where

ﬁZ(U)T = ﬁlZl(u) + ﬁ222(u) + ...+ ﬁpr(u)

Quantify clustering using parameter ¢ in parametric model
K(tiy) = / g(hi¥)dh
A<t

for K /g-function.
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Point processes and count variables

Random count variables: N; = #X N G T o ]
number of points in C;. o7 ’

Disjoint subdivision W = U?_, C; in .
‘cells’ C;. 1. .| €
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Point processes and count variables

Random count variables: N; = #X N G T o ]
number of points in C;. o7 ’

Disjoint subdivision W = U?_, C; in .
‘cells’ C;. 1. .| €

EN; = p(u))| G| E[N;N;] ~ p®(uj, )| G| G
Cov(N;, Nj) = (p (ui, uj) — p(ui)p(u))| G| G|
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Point processes and count variables

Random count variables: N; = #X N G T . 1
number of points in C;. ’

Disjoint subdivision W = U?_, C; in

‘cells’ C;. ° . L ®

EN; = p(u))| G| E[N;N;] ~ p®(uj, )| G| G
Cov(N;, Nj) = (p (ui, uj) — p(ui)p(u))| G| G|

Poisson process: counts N; independent and Poisson distributed
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Point processes and count variables

Random count variables: N; = #X N G T . 1
number of points in C;. ’

Disjoint subdivision W = U?_, C; in

‘cells’ C;. ° . L ®

EN; = p(u))| G| E[N;N;] ~ p®(uj, )| G| G
Cov(N;, Nj) = (0 (i, uj) — p(ui)p(17))| Gil | Gl
Poisson process: counts N; independent and Poisson distributed

Independence often unrealistic - e.g. clustering due to seed
dispersal
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Cluster process: Inhomogeneous Thomas process (Waa,

2007)

= & % . . .

. %ﬁg % Parents stationary Poisson point process
fgwf@g ’ intensity &
"% o F o

7o Offspring distributed around mothers
v e according to Gaussian density with
x ) standard deviation w
° s

Inhomogeneity: offspring survive
according to probability

p(u) oc exp(Z(u)3")

depending on covariates (independent
thinning).
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Cox processes

X is a Cox process driven by the random intensity function A if,

conditional on A = A, X is a Poisson process with intensity
function .

Example: log Gaussian Cox process (Mgller, Syversveen, Waa,
1998)

log A(u) = BZ(u)T + Y (u)

where {Y'(u)} Gaussian random field.

BZ(u)" + Y(u)



Intensity and product density for a Cox process

Given A, Cox process X becomes Poisson process with intensity
function A(u) and product density A(u)A(v).

Hence intensity and product density for X obtained by averaging
with respect to A:

p(u) = EA(u)
#O(u,v) = EAWAV)
EA(u)A(v)

&(6:Y) = TAIEAD)
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Intensity and pair correlation function for specific Cox
processes

Log linear intensity (both log Gaussian Cox and inhomogeneous
Thomas):

log p(u; 8) = p + Z(u)B"
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Intensity and pair correlation function for specific Cox
processes

Log linear intensity (both log Gaussian Cox and inhomogeneous
Thomas):

log p(u; 8) = p + Z(u)B"

Pair correlation function for log Gaussian Cox process:

g(u;9) = exp(oc(uia)), ¥ = (0% )

where o2

variance of Gaussian field and c(-; &) correlation function.
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Intensity and pair correlation function for specific Cox
processes

Log linear intensity (both log Gaussian Cox and inhomogeneous
Thomas):

log p(u; 8) = p + Z(u)B"

Pair correlation function for log Gaussian Cox process:

g(u;9) = exp(oc(uia)), ¥ = (0% )

where o2

Pair correlation function for inhomogeneous Thomas:

glt;) =1+ exp(—t2/(4w)2)]/(4w2/€7r), Y= (w,K)

variance of Gaussian field and c(-; &) correlation function.
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Parameter estimation

Possibilities:

1. Maximum likelihood estimation (Monte Carlo computation of
likelihood function)

2. Simple estimating functions based on intensity function and
pair correlation function - inspired by methods for count
variables: least squares, composite likelihood,
quasi-likelihood, ...
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Maximum likelihood estimation for Cox processes

Likelihood (probability density) for Cox process given observed
point pattern x:

0 = Ealeso(— | Aw)du) [T A)

Problem for Monte Carlo approximation: A = {A(u)},ew infinitely
dimensional quantity.
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Maximum likelihood estimation for Cox processes
Likelihood (probability density) for Cox process given observed

uex

point pattern x:
0 = Ealeso(— | Aw)du) [T A)

Problem for Monte Carlo approximation: A = {A(u)},ew infinitely

dimensional quantity.
LCGP: approximate inference by e

discretizing random field o
A(u) = exp(BZ(u)T + ¥ (1) R
Counts N; Poisson with mean oo ©° ) . 5

"k o @%n%?” g% .

exp(AZ(u)T + Y ()| Gl : 4 dcs

° | o 8 o

(Poisson GLMM, Benes, Bodlak,
Mgller, Waa, 2005)
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Big covariance matrix of highdimensional Gaussian random vector

(Y(v1),--.,Y(un))

(n = 100000) can be handled using FFT (fast Fourier
transformation).
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Big covariance matrix of highdimensional Gaussian random vector

(Y(v1),--.,Y(un))

(n = 100000) can be handled using FFT (fast Fourier
transformation).

Cox-cluster process (e.g. inhomogeneous Thomas):
Au) = kexp(BZ(u)T) Z k(u—c)
ceC
Hence need Markov chain Monte Carlo simulation of parent points

C given observed points XN W = x.

Monte Carlo estimation of likelihood possible for Cox processes but
MCMC computation may be very time-consuming.

27
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Example: composite likelihood | (Schoenberg, 2005; Waa,
2007)

Consider indicators X; = 1[N; > 0] for presence of points in cells
C,'. P(X,' = 1) = pﬁ(u,-)|C,-\.
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Example: composite likelihood | (Schoenberg, 2005; Waa,
2007)

Consider indicators X; = 1[N; > 0] for presence of points in cells
C,'. P(X,' = 1) = pg(u,-)|C,-\.

Composite Bernouilli likelihood
[I(Pxi = 1)1~ fX—H%M (L—pp(u)|GI)*™
i=1

has limit (|G;| — 0)

=1 I otwiNew(= [ ofu:s)du

ueXnw
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Example: composite likelihood | (Schoenberg, 2005; Waa,
2007)

Consider indicators X; = 1[N; > 0] for presence of points in cells
C,'. P(X,' = ].) = pﬂ(u,-)|C,-\.

Composite Bernouilli likelihood
[1P06 = (PO = 1) X—Hlpﬁ () (1=p5() G
;1_as limit (|G| — 0) |

D=L Aol | ot )

Estimate 3 maximizes L(£3).

NB: L(f3) formally equivalent to likelihood function of a Poisson

process with intensity function pg(-).
30/50



Composite likelihood Il (Waa, 2007)

Composite likelihood based on pg(-) only involves 3 - what about

W ?
Proceed as before but for indicators
Xij =1[N; > 0,N; > 0] (= N;N; when C; and C; small )

for joint presence of points in pairs of cells C; and C;.

31/50



Composite likelihood Il (Waa, 2007)

Composite likelihood based on pg(-) only involves 3 - what about

W ?
Proceed as before but for indicators
Xij =1[N; > 0,N; > 0] (= N;N; when C; and C; small )

for joint presence of points in pairs of cells C; and C;.

Then
P(X; = 1) = EN;N; = p@(u,v; 8,%)|G| ]

and Bernouilli composite likelihood based on Xj; converges to

#
L) =1 1] #@visolee(- [ p(wvi6.0)dudv)

2
u,veXNw w
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Minimum contrast estimation for 1 |

Computationally easy alternative if X second-order reweighted
stationary so that K-function well-defined:

_ _ 1 1o <flu—vl[ <1
Kt = /||h||<tg(h)dh - ‘W‘Euexr%/:,vex p(u; B)p(v; B)
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Minimum contrast estimation for 1 |

Computationally easy alternative if X second-order reweighted
stationary so that K-function well-defined:

_ _ 1 1o <flu—vl[ <1
Kt = /||h||<tg(h)dh - ‘W‘Euexr%/:,vex p(u; B)p(v; B)

Estimate of K-function (Baddeley, Mgller and Waa, 2000):

~ 1 10 < Ju—v| < t]
K = T/l u,v
=T, 2 i)

Unbiased if § ‘true’ regression parameter
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Minimum contrast estimation for ) Il

Estimate 1 by minimizing squared distance between theoretical K
and K:

A

@b:argfin/o ( ﬁ(t)—K(t;l/J)) dt

35000
|

— Kestim.
—— Inhom. Thomas

25000
|

K(t)

15000
|

0 5000

35/50



Two-step estimation

Obtain estimates ({3, ) in two steps

1. obtain 3 using composite likelihood |

2. obtain v using minimum contrast or composite likelihood Il

LZ(BJ 1/})

Waa (2007), Waa and Guan (2009): consistency and asymptotic
normality of ((3,4) for infinitely divisible or mixing point processes
(e.g. Poisson cluster processes):

IWITY2((B,4) — (B,4))<N(0, V)
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Example: modes of seed dispersal and clustering

Three species with different modes of seed dispersal:

Acalypha Diversifolia explosive

capsules .
Loncocharpus Heptaphyllus wind

Is degree of clustering related to
mode of seed dispersal ?
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Fit Thomas cluster process with log linear model for intensity
function.

Acalypha and Capparis: positive dependence on elevation and
potassium (significant positive values of [3).

Loncocharpus: negative dependence on nitrogen and phosphorous.

Recall w = ‘width’ of clusters.

Estimates of w for explosive, Estimates of K-functions for
wind and bird/mammal: bird/mammal dispersed species

2
©
5000 10000 15000 20000 25000 30000 35000
L L L L L L L

-
o
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Decomposition of variance for rain forest tree point
patterns (Shen, Jalilian, Waa, in progress)
Question: how much of the spatial variation for rain forest trees is

due to environment ?

Variance of a count N; (number of points in cell G;) for a
stationary Cox process:
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Decomposition of variance for rain forest tree point
patterns (Shen, Jalilian, Waa, in progress)
Question: how much of the spatial variation for rain forest trees is

due to environment ?

Variance of a count N; (number of points in cell G;) for a
stationary Cox process:

VarN,-:/ pdu
C.

i

Variance=Poisson variance
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Decomposition of variance for rain forest tree point
patterns (Shen, Jalilian, Waa, in progress)

Question: how much of the spatial variation for rain forest trees is
due to environment ?

Variance of a count N; (number of points in cell G;) for a
stationary Cox process:

VarN; = / pdu + // p’lg(u,v) — 1]dudv
G e

Variance=Poisson variance+Extra variance due to random intensity
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Decomposition of variance for rain forest tree point
patterns (Shen, Jalilian, Waa, in progress)

Question: how much of the spatial variation for rain forest trees is
due to environment ?

Variance of a count N; (number of points in cell G;) for a
stationary Cox process:

VarN; = / pdu + // p’lg(u,v) — 1]dudv
G e

Variance=Poisson variance+Extra variance due to random intensity

Summary of extra Poisson variation:

ple(u,v) — 1]

= plg(wv) -1
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Variance of log linear random intensity:
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Variance of log linear random intensity:

Varlog A(u) =

Variance=
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Variance of log linear random intensity:

Varlog A(u) = VardZ(u)" + VarY(u) = 0% + 0%

Variance=Environment+Seed dispersal
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Variance of log linear random intensity:
Varlog A(u) = + VarY(u) = 0% + 0%
Variance= +Seed dispersal

Note Z(u) = $Z(u)T regarded as stationary random process.
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Variance of log linear random intensity:
Varlog A(u) = + VarY(u) = 0% + 0%
Variance= +Seed dispersal
Note Z(u) = $Z(u)T regarded as stationary random process.

Estimate § and a% using two-step approach.

Simple empirical estimate of O‘% :

n
G ueG
Compute
2 2
0z Oy
0% + 02 and 0% + o2
Z Y Z Y

Example (Capparis Frondosa): &% = 0.10 and 63 = 0.69. Hence
12.5% of variance due to environment.
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Additive model for random intensity function (Jalilian,

Guan, Waa, in progress)
Alternative to log linear model:
Au) = BZ(u)T + Y(v)
Cox process superposition of point processes with (random)

intensity functions Z(u) = 8Z(u)" and Y (u)

Intensity function:

p(u) = py +BZ(u)T (py =EY(v))

Least squares estimation:

() = argmin (0~ o) )" =
(py,B)

argmmZ N;/|Gl = py — BZ(u)T)?
(py,B)
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NB: for |C;| — O least squares estimate solves estimating equation
> 20) - [ 2@y + 52 s =0
ueX w

Further possibilities: weighted least squares using covariance
matrix of counts.

Cov[Ni, Nj] = p¥ (g (ur, ujiv)) — 1)
NB: estimated 3Z(u)T not necessarily positive.

Finally estimate parameter v for Y using composite likelihood Il
since

PP (u,v) = p(u)p(v) + P (gy (u,vi) — 1)
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Thanks for your attention
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