Two-step estimation for inhomogeneous spatial
point processes

Rasmus Waagepetersen
Spar Nord Bank and Aalborg University
Denmark

February 27, 2010

21



Background: Tropical rain forest ecology

Fundamental questions: which factors govern the spatial
distribution of rain forest trees and support the high biodiversity of
rain forests 7

> environment: topography, soil composition,...
» seed dispersal: by wind, birds or mammals...

» competition between species



Example: Capparis Frondosa

» observation window
= 1000 m x 500 m

> seed dispersal=- clustering

» environment =
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Quantify dependence on environmental variables and seed dispersal
using statistics for spatial point processes.
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Intensity function and product density

Intensity function of point process X on R?:

p(u)dA =~ P(X has a point in A)
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Intensity function and product density

Intensity function of point process X on R?:
p(u)dA =~ P(X has a point in A)
Second order product density

PP (u, v)dAdB ~ P(X has a point in each of A and B)

Pair correlation and K-function (provided g(u,v) = g(u — v) i.e.

X second-order reweighted stationary)

_ Py _
o) = oy MR- [ st

NB: for Poisson process, g(u — v) = 1, clustering: g(u —v) > 1.



Parametric models

Study influence of covariates using log-linear model for intensity
function:

p(u; B) = exp(z(u)B")



Parametric models

Study influence of covariates using log-linear model for intensity
function:

p(u; B) = exp(z(v)BT)
and quantify clustering using parameter 1 in parametric model
K(tiy) = / g(hiy)dh
A<t

for K /g-function.



Estimating function for 3

Maximum likelihood estimation only easy in case of a Poisson
process X in which case log likelihood is

B = 3 2(u)s" - /W p(u; B)du

ueXNW

Poisson score estimating function based on point process X
observed in W:

u(B) = z(u) = | z(u)p(u; p)du
ue;w /W ’

also applicable for non-Poisson point processes with intensity
function p(+; B) (Schoenberg, 2005, Waagepetersen, 2007)

10/21



Estimating function for v

Estimate of K-function:

~ 1[0<||u—vH§t]
K = E n
ﬁ(t) u7v€XﬂW p(U,,B)p(V.,B) € ’

Unbiased if 8 = 8* ‘'true’ regression parameter.
Minimum contrast estimation: minimize
S 2
[ (Rato) - k(s ))ae
0
or solve estimating equation

up 5(1 |W|/ Ks(t) tw))%dtzo



Two-step estimation
Estimate (53, 4) by solving

or, equivalently, solve

u(B,¥) = (un(B), urs(¥)) =

Waagepetersen and Guan (2009): asymptotic normality of (3, ¢))
for mixing point processes (e.g. Poisson cluster processes).

Essential requirement: u(/3*,1*) asymptotically normal - then
asymptotic normality of (3, ) follows by Taylor expansion

du(B, w)r

(B.6) — (8" v") ~ u(8", w)[ e
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CLT for estimating function

Consider increasing observation windows W,,. Wh

Divide R? into quadratic cells
Aj =i i+ 1x[,J + 1] :

o

Express Poisson score in terms of lattice process Xj;, i,j € Z:

BB = Y 20)- [ (ol p)du =

ueXNW, n

Z Z z(u)—/WmA“z(u)p(u;ﬁ)du = Z Xij+op(1)

i,j | ueXNWqnA; ij: A CWhp



Similarly:

N dK t; 1/1

g50) = W [ (Rote)=K(rio) e = 37 irop(t
ij:AjC Wi

since

-y oy el e~ S Ruiorontt)

ueXNW, veXnW, ij: A CWhp

Koj()= 3 21[0<”U—5H5f1

uGXﬂA veX
estimate of K-function based on XN Aj;.

where

{Xij} and {Yj;j} multivariate lattice processes.

Apply Bolthausen/Guyoun CLT for mixing lattice processes to
random field {Zj;};; of linear combinations

Z,'j = X,'J'XT + Y,'ij.
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Mixing
Consider Ei, E, C R? and point configurations F; and F».
Need polynomial decay of dependence
IP(XNE1 € A, XNE € FR)—P(XNE € R)P(XNE € R)|

as function of distance between E; and E,.

+
X
—_— %
This can easily be verified for a : *35_ : *
Poisson cluster process where ! [ *i;
. " I
cluster density decays fast : El% J
enough. |t *i
* X=X1UX>5

=
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Modified Thomas process

K-function:

Mothers (triangles) sta-
tionary  Poisson  point
process intensity k

Offspring distributed
around mothers according
to Gaussian density with
standard deviation w

Kiwm(t) = Tt + [1 — exp(—1?/(2w)?)] /5



Modified Thomas process

K-function:

Mothers (triangles) sta-
tionary  Poisson  point
process intensity k

Offspring distributed
around mothers according
to Gaussian density with
standard deviation w

Koy (t) = 782 + [1 — exp(—?/(2w)?)] /x
Inhomogeneity: offspring survive according to probability
p(u) o exp(z(u)B")

depending on covariates (independent thinning).

Inhomogenous Thomas process independent thinning of Thomas

= mixing
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Modes of seed dispersal and clustering

Three species with different modes of seed dispersal:

Acalypha Diversifolia explosive

capsules .
Loncocharpus Heptaphyllus wind

Is degree of clustering related to
mode of seed dispersal ?




Fit Thomas cluster process with log linear model for intensity
function.

Acalypha and Capparis: positive dependence on elevation and
potassium.

Loncocharpus: negative dependence on nitrogen and phosphorous.
Recall w = ‘width’ of clusters.

Estimates of w for explosive, Estimates of K-functions for
wind and bird/mammal: bird/mammal dispersed species
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Further statistical and biological issues:

» choice of integration limit r for minimum contrast estimation
S 2
/0 (R(t) — K(t9))%dt

» variance of Ré(t) smaller than variance of Kg«(t) hence
better to use 3 than 3* when estimating .
» joint modelling of several species (competition)

» how to quantify the relative importance of different sources of
spatial variation 7
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