Unbiased estimating functions for spatial point processes

Rasmus Waagepetersen
Department of Mathematical Sciences
Aalborg University

based on joint work (in progress!) with

Adrian Baddeley, Jean-Francois Coeurjolly, Yongtao Guan, Abdollah Jalilian and Ege Rubak

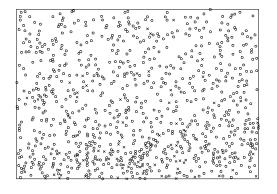
Outline

- Data examples
- GNZ and Campbell formulae
- Gibbs and Cox spatial point processes
- pseudo-likelihood and composite likelihood
- ► Monte Carlo approximations and relation to logistic regression
- Examples of applications

Aim: discuss closely related estimating functions for two very distinct classes of point processes.

Mucous membrane cells

Centres of cells in mucous membrane:



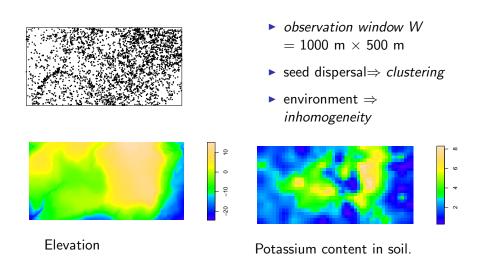
Repulsion due to physical extent of cells

Inhomogeneity - lower intensity in upper part

Bivariate - two types of cells

Same type of inhomogeneity for two types ?

Data example: Capparis Frondosa



Objective: quantify dependence on environmental variables.

Intensity and conditional intensity

Point process **X**: random point pattern. Assume observed in bounded window $W \subset \mathbb{R}^2$. u spatial location in W.

Intensity $\lambda(u)$: for infinitesimal region A and $u \in A$,

$$P(\mathbf{X} \text{ point in } A) = \lambda(u)|A|$$

Conditional intensity $\lambda(u, \mathbf{X})$:

$$P(\mathbf{X} \text{ has a point in } A|\mathbf{X} \setminus A) = \lambda(u,\mathbf{X})|A|$$

Note

$$P(\mathbf{X} \text{ point in } A) = \mathbb{E}P(\mathbf{X} \text{ point in } A | \mathbf{X} \setminus A) \Rightarrow \lambda(u) = \mathbb{E}\lambda(u, \mathbf{X})$$

GNZ and Campbell formulae

Georgii-Nguyen-Zessin formula:

$$\mathbb{E}\sum_{u\in\mathbf{X}}f(u,\mathbf{X}\setminus u)=\int_{W}\mathbb{E}[f(u,\mathbf{X})\lambda(u,\mathbf{X})]\mathrm{d}u$$

for non-negative functions f.

Campbell formula:

$$\mathbb{E}\sum_{u\in\mathbf{X}}f(u)=\int_{W}f(u)\lambda(u)\mathrm{d}u$$

Note: special case of GNZ since $\lambda(u) = \mathbb{E}\lambda(u, \mathbf{X})$.

Gibbs point processes

Gibbs point processes specified by explicit model for the conditional intensity.

Strauss:

$$\lambda_{\theta}(u, \mathbf{X}) = \exp[\beta + \psi n_{R}(u, \mathbf{X})], \quad \beta > 0, \ \psi \leq 0$$

 $n_R(u, \mathbf{X})$: number of neighboring points within distance R from u.

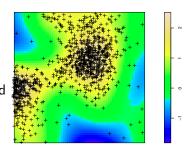
Inhomogeneous: Z(u) covariate at $u \in \mathbb{R}^2$.

$$\lambda_{\theta}(u, \mathbf{X}) = \exp[\beta Z(u)^{\mathsf{T}} + \psi n_{R}(u, \mathbf{X})]$$

Cox processes

X Poisson process with intensity function $\lambda(\cdot)$:

total number of points Poisson and given this, points iid with density $\propto \lambda(u)$.



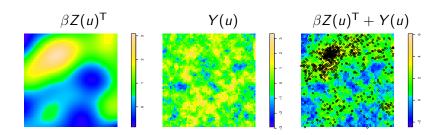
X is a *Cox process* driven by the *random* intensity function Λ if, conditional on $\Lambda = \lambda$, **X** is a Poisson process with intensity function λ .

Example: log Gaussian Cox process

log Gaussian Cox process ("point process GLMM")

$$\Lambda(u) = \exp[\beta Z(u)^{\mathsf{T}} + Y(u)]$$

where $\{Y(u)\}$ Gaussian random field:



For Gibbs point process $\lambda(u, \mathbf{X})$ is given but $\lambda(u) = \mathbb{E}\lambda(u, \mathbf{X})$ hard.

For Cox process, $\lambda(u, \mathbf{X})$ not known but

$$\lambda(u)|A| = P(\mathbf{X} \text{ point in } A) = \mathbb{E}P(\mathbf{X} \text{ point in } A|\Lambda) = \mathbb{E}\Lambda(u)|A|$$

Often $\lambda(u) = \mathbb{E}\Lambda(u)$ easy to evaluate for Cox processes.

E.g.
$$\log \Lambda(u) \sim N(\beta Z(u)^T, \sigma^2)$$
 [log Gaussian Cox process]:

$$\lambda(u) = \exp(\beta Z(u)^{\mathsf{T}} + \sigma^2/2)$$

Estimating function

Estimating function: $e(\theta)$ [$e(\theta, \mathbf{X})$] function of θ and data \mathbf{X} .

Parameter estimate $\hat{\theta}$ solution of

$$e(\theta) = 0$$

Sensitivity:

$$S = -\mathbb{E}\left[\frac{\mathrm{d}}{\mathrm{d}\theta}e(\theta)\right]$$

minus expected derivative of $e(\theta)$

Estimating function

Estimating function: $e(\theta)$ [$e(\theta, \mathbf{X})$] function of θ and data \mathbf{X} .

Parameter estimate $\hat{\theta}$ solution of

$$e(\theta) = 0$$

Sensitivity:

$$S = -\mathbb{E}\left[\frac{\mathrm{d}}{\mathrm{d}\theta}e(\theta)\right]$$

minus expected derivative of $e(\theta)$

$$\hat{\theta}$$
 unbiased $\mathbb{E}\hat{\theta}=\theta^*$ if $e(\theta)$ unbiased $\mathbb{E}e(\theta^*)=0$ (θ^* true value).

$$\mathbb{V}\mathrm{ar}\hat{\theta} = S^{-1}\Sigma S^{-1} \quad \Sigma = \mathbb{V}\mathrm{ar}e(\theta^*)$$

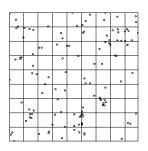
How do we construct unbiased estimating functions involving **X** and θ ?

Composite and pseudo-likelihood

Disjoint subdivision $W = \bigcup_{i=1}^{m} C_i$ in 'cells' C_i .

 $u_i \in C_i$ 'center' point.

Random indicator variables: $N_i = 1[\mathbf{X} \text{ has a point in } C_i \neq \emptyset]$ (presence/absence of points in C_i).



$$P(N_i=1)=|C_i|\lambda_{ heta}(u_i)$$
 and $P(N_i=1|\mathbf{X}\setminus C_i)=|C_i|\lambda_{ heta}(u_i,\mathbf{X})$

Idea: form composite likelihoods based on N_i with marginal or conditional probabilities.

Consider limit when $|C_i| \to 0$.

Log composite likelihood (in fact log likelihood for Poisson):

$$\sum_{u \in \mathbf{X}} \log \lambda_{\theta}(u) - \int_{W} \lambda_{\theta}(u) du$$

Log pseudo-likelihood (Besag, 1977)

$$\sum_{u \in \mathbf{X}} \log \lambda_{\theta}(u, \mathbf{X} \setminus u) - \int_{W} \lambda_{\theta}(u, \mathbf{X}) du$$

Scores:

$$\sum_{u \in \mathbf{Y}} \frac{\lambda_{\theta}'(u)}{\lambda_{\theta}(u)} - \int_{W} \lambda_{\theta}'(u) du$$

and

$$\sum_{u \in \mathbf{X}} \frac{\lambda_{\theta}'(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u)} - \int_{W} \lambda_{\theta}'(u, \mathbf{X}) du$$

unbiased estimating functions by Campbell/GNZ.

Issue:

integrals

$$\int_W \lambda_{ heta}'(u) \mathrm{d}u$$
 and $\int_W \lambda_{ heta}'(u,\mathbf{X}) \mathrm{d}u$

often not explicitly computable.

Numerical quadrature may introduce bias.

Monte Carlo approximation

Let **D** 'quadrature/dummy' point process of intensity $\rho(\cdot)$ and independent of **X**.

By GNZ

$$\mathbb{E} \int_{W} \lambda'(u, \mathbf{X}) du = \mathbb{E} \sum_{u \in \mathbf{X} \cup \mathbf{D}} \frac{\lambda'(u, \mathbf{X})}{\lambda(u, \mathbf{X}) + \rho(u)}$$

By Campbell

$$\int_{W} \lambda'(u) du = \mathbb{E} \sum_{u \in \mathbf{X} \cup \mathbf{D}} \frac{\lambda'(u)}{\lambda(u) + \rho(u)}$$

Idea: replace integrals in pseudo- or composite likelihood with unbiased estimates using \mathbf{D} .

Dummy point process

Should be easy to simulate and mathematically tractable.

Possibilities:

- 1. Poisson process
- binomial point process (fixed number of independent points)
- 3. stratified binomial point process

Stratified:

+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+

Monte Carlo approximation and logistic regression

Consider binary variables Y_{μ} with

$$p(u) = P(Y_u = 1) = \frac{f_{\theta}(u)}{f_{\theta}(u) + 1}$$

Log logistic regression likelihood:

$$\sum_{u:Y_u=1} \log \frac{f_{\theta}(u)}{1+f_{\theta}(u)} + \sum_{u:Y_u=0} \log \frac{1}{1+f_{\theta}(u)} = \sum_{u:Y_u=1} \log f_{\theta}(u) + \sum_{\text{all } u} \log \frac{1}{1+f_{\theta}(u)}$$

Score function:

$$\sum_{u:Y_u=1} \frac{f'(u)}{f_{\theta}(u)} + \sum_{\text{all } u} \frac{f'(u)}{1 + f_{\theta}(u)}$$

Approximate pseudo- and composite likelihood scores:

$$s(\theta) = \sum_{u \in \mathbf{X}} \frac{\lambda'_{\theta}(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u)} - \sum_{u \in (\mathbf{X} \cup \mathbf{D})} \frac{\lambda'_{\theta}(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u) + \rho(u)}$$
$$s(\theta) = \sum_{u \in \mathbf{X}} \frac{\lambda'_{\theta}(u)}{\lambda_{\theta}(u)} - \sum_{u \in (\mathbf{X} \cup \mathbf{D})} \frac{\lambda'_{\theta}(u)}{\lambda_{\theta}(u) + \rho(u)}$$

Note: of logistic regression/case control form with 'probabilities'

$$\rho(u|\mathbf{X}) = \frac{\lambda_{\theta}(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u) + \rho(u)}$$

and

$$p(u) = \frac{\lambda_{\theta}(u)}{\lambda_{\theta}(u) + \rho(u)}$$

I.e. probabilities that $u \in X$ given $u \in X \cup D$.

Hence computations straightforward with glm(), software,!

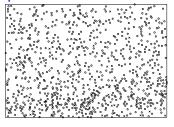
Asymptotic results

Available - but quite technical (will skip details here).

Asymptotic covariance matrix implemented in spatstat \Rightarrow approximate confidence intervals.

Possible to evaluate the proportion of estimation variance due to random quadrature points.

Example: mucous membrane



86 (type 1) + 807 (type 1)2) points.

 1×0.7 observation window.

Marked point u = (x, y, m) where m = 1 or 2 (two types of points).

Bivariate Strauss point process with

$$\lambda_{\theta}(u, \mathbf{X}) = \exp[q_m(y) + \psi n_R(u, \mathbf{X})]$$

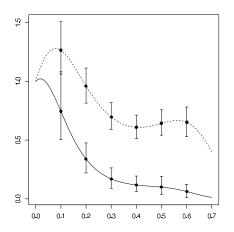
 $q_m(y)$: polynomial in spatial y-coordinate.

 $n_R(u, \mathbf{X})$: number of neighbors within range R = 0.008.

3600 stratified dummy points (random marks 1 or 2).

Fitted polynomials

Fitted polynomials (with confidence intervals for selected *y* values):



Polynomials significantly different according to logistic likelihood ratio test (parametric bootstrap).

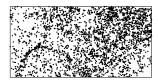
Decomposition of variance

	3600					14400		
•	$\hat{ heta}$	$sd(\hat{ heta})$	$sd(T_1)$	inc. (%)	sd	$(\hat{\theta})$	$sd(T_1)$	inc. (%)
$q_1(0.1)$	6.004	0.195	0.189	3.608	0.3	191	0.189	0.812
$q_1(0.3)$	4.528	0.267	0.263	1.332	0.2	264	0.263	0.301
$q_1(0.5)$	3.994	0.406	0.404	0.555	0.4	404	0.404	0.146
$q_2(0.1)$	7.800	0.091	0.078	15.623	0.0	082	0.079	3.801
$q_2(0.3)$	7.204	0.083	0.075	10.923	0.0	076	0.075	2.589
$q_2(0.5)$	7.123	0.086	0.077	10.558	0.0	080	0.078	2.824
ψ	-2.594	0.344	0.341	0.971	0.3	342	0.341	0.197

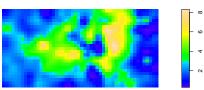
 $\operatorname{sd}(T_1) \approx \operatorname{standard}$ deviation for pseudo-likelihood without approximation.

Example: tree species Capparis Frondosa and Loncocharpus Heptaphyllus

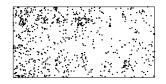
Capparis Frondosa



Potassium content in soil.



Loncocharpus Heptaphyllus



Covariates pH, elevation, gradient, potassium,...

Objective: infer regression model $\lambda_{\beta}(u) = \exp[\beta Z(u)^{T}]$

Clustered point patterns: Cox point process natural model.

Problem: covariates sampled on (coarse) deterministic grid.

Plots shown: interpolated values of covariates.

Hence unbiased Monte Carlo approximation not applicable.

For now: integral

$$\int_{\mathcal{W}} \lambda_{\beta}(u) \mathrm{d}u$$

approximated using numerical quadrature based on interpolated values.

Need to convince biologists to use random sampling designs.

Optimality?

Composite likelihood score

$$\sum_{u \in \mathbf{X}} \frac{\lambda_{\beta}'(u)}{\lambda_{\beta}(u)} - \int_{W} \lambda_{\beta}'(u) du$$

optimal for Poisson (likelihood).

Which f makes

$$e_f(\beta) = \sum_{u \in \mathbf{X}} f(u) - \int_W f(u) \lambda_{\beta}(u) du$$

optimal for Cox point process (positive dependence between points) ?

Optimal first-order estimating equation

Optimal choice of *f*: smallest variance

$$\mathbb{V}\mathrm{ar}\hat{\beta} = V_f = S_f^{-1}\Sigma_f S_f^{-1}$$

where

$$S_f = -\mathbb{E} rac{\mathrm{d}}{\mathrm{d}eta^\mathsf{T}} e_f(eta) \quad \Sigma_f = \mathbb{V}\mathrm{ar} e_f(eta)$$

Possible to obtain optimal f as solution of certain Fredholm integral equation.

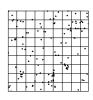
Numerical solution of integral equation leads to estimating function of quasi-likelihood type.

Quasi-likelihood

Approximate solution of Fredholm integral equation using numerical quadrature: Riemann sum dividing W into cells C_i with representative points u_i .

Quasi-likelihood

Approximate solution of Fredholm integral equation using numerical quadrature: Riemann sum dividing W into cells C_i with representative points u_i .



Resulting estimating function is quasi-likelihood

$$(N-\mu)V^{-1}D$$

based on

$$N = (N_1, \dots, N_m), \quad N_i = 1[\mathbf{X} \text{ has point in } C_i].$$

Quasi-likelihood

Approximate solution of Fredholm integral equation using numerical quadrature: Riemann sum dividing Winto cells C_i with representative points U_i .



Resulting estimating function is quasi-likelihood

$$(N-\mu)V^{-1}D$$

based on

$$N = (N_1, \dots, N_m), \quad N_i = 1[\mathbf{X} \text{ has point in } C_i].$$

 μ mean of N:

$$\mu_i = \mathbb{E} N_i = \lambda_{\beta}(u_i) |C_i| \text{ and } D = \left[\mathrm{d}\mu(u_i) / \mathrm{d}\beta_I \right]_{iI}$$

V covariance of N (involves covariance of random intensity):

$$V_{ij} = \mathbb{C}\text{ov}[N_i, N_j] = \mu_i \mathbb{1}[i = j] + \mu_i \mu_j \mathbb{C}\text{ov}[\Lambda(u_i), \Lambda(u_j)]$$

Results with composite likelihood and quasi-likelihood

species	\widehat{eta}	
Loncocharpus	CL	$-6.49 - 0.021$ Nmin -0.11 P -0.59 pH -0.11 twi $(81.06^*, 7.45^*, 58.78, 282.89^*, 53.19^*) \times 10^{-3}$
	QL	-6.49 - 0.023Nmin -0.12 P -0.55 pH -0.084 twi
		$(80.15^*, 6.95^*, 55.23^*, 266.10^*, 45.47) \times 10^{-3}$
Capparis	CL	-5.07 + 0.028ele -1.10 grad $+0.0043$ K
		$(79.54^*, 9.98^*, 1200.36, 1.16^*) \times 10^{-3}$
	QL	-5.10 + 0.019ele -2.50 grad $+0.0039$ K
		$(77.77^*, 8.86^*, 935.02^*, 1.02^*) \times 10^{-3}$

Estimated standard errors always smallest for QL. Covariate grad significant according to QL but not for CL.

References

Waagepetersen (2007). An estimating function approach to inference for inhomogeneous Neyman-Scott processes, *Biometrics*.

Waagepetersen, R. (2007). Estimating functions for inhomogeneous spatial point processes with incomplete covariate data, *Biometrika*.

Jalilian, Guan and Waagepetersen (2012). Decomposition of variance for spatial Cox processes, *Scandinavian Journal of Statistics*, to appear.

Guan, Jalilian and Waagepetersen (2012). Optimal first order estimating functions for spatial point processes, submitted.

Baddeley, Couerjolly, Rubak and Waagepetersen (2012). A logistic regression estimating function for spatial Gibbs point processes, in preparation.

Thanks for your attention!