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Aim

Discuss MCMC computational strategies for complex (non-normal)
models in quantitative genetics.

Special focus on high-dimensional vectors of genetic random
effects.

Joint work with Noelia Ibánẽz and Daniel Sorensen.



Generic set-up and notation
y: vector of observations of a trait (litter size/animal weight/. . .)

a: vector of genetic random effects

a ∼ N(0, σ2
aA)

where σ2
a additive genetic variance and A additive genetic

relationship matrix.

f (y|a;µ): sampling density of y given a.

Normal likelihood L(µ, σ2
a) = f (y;µ, σ2

a) if f (y|a;µ) density for
linear normal model.

Normal case computationally rather straightforward (whether
frequentist or Bayes).

This talk: computational strategies for Bayesian inference in the
non-normal case.



Non-normal or non-linear models

Suppose f (y|a;µ) not normal or non-linear model involving a.

Then likelihood

f (y;µ, σ2
a) =

∫

f (y|a, µ)p(a;σ2
a)da

not available in closed form.

Example (generalized linear mixed model): observation yi Poisson
with mean exp(µ + zT

i
a)

Example (genetic variance heterogeneity): yi normal with variance
depending on additive genetic values (more details later).



Bayesian inference using MCMC
Introduce prior p(µ, σ2

a) for unknown parameters and explore
posterior

p(a, µ, σ2
a |y) ∝ f (y|a;µ)p(a;σ2

a)p(µ, σ2
a)

using MCMC sample: (a1, µ1, σ2,1
a ), (a2, µ2, σ2,2

a ), . . .

Metropolis-Hastings update of a:

Current value: ak and proposal aprop ∼ q(aprop|ak)

where q proposal density. With probability

min
{

1,
p(aprop, µ, σ2|y)q(ak |aprop)

p(ak , µ, σ2|y)q(aprop|ak)

}

new state ak+1 = aprop; otherwise ak+1 = ak .

Problem: efficient update of highdimensional a.



Choice of proposal density q

Gibbs sampler: q conditional density of a given (µ, σ2
a , y) - only

available for standard linear mixed model.

Random walk:
aprop ∼ N(ak , hI )

- small acceptance rates when a highdimensional.

Langevin-Hastings (use gradient information):

aprop ∼ N(ak + h∇ log p(a|y, µ, σ2
a)/2, hI )

- better acceptance rates than random walk in high dimensions.

Reparametrization: apply Langevin-Hastings to transformed
random effects

γ = σ−1
a A−1/2a ∼ N(0, I ) (a priori)



Example: genetic variance heterogeneity

Genetic random effects a and a∗ influencing mean and variance of
yi .

Sampling distribution of yi given (a, a∗):

yi ∼ N
(

µ + zT
i a, exp(µ∗ + zT

i a∗)
)

where
(a, a∗) ∼ N(0,G ⊗ A)

with

G =

[

σ2
a ρσaσa∗

ρσaσa∗ σ2
a∗

]

Very challenging from a computational point of view.



Illustration of MCMC strategies for toy example

a and a∗ each one-dimensional (only one animal in pedigree),
simulated data y = (−2.62,−2.42).

Posterior of (a, a∗)
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Random walk and Langevin-Hastings updates for (γ,γ∗) (blue dot
is current value)

Random walk
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Langevin-Hastings
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Normal approximation

Idea: approximate posterior of a (or a, a∗) using second order
Taylor expansion:

log p(a|y) ≈ log p(â|y)+(a−â)∇ log p(â|y)T−
1

2
(a−â)H(â)(a−â)T

Hence
aprop ∼ N(â + ∇ log p(â|y)H(â)−1,H(â)−1)



Normal approximation

Idea: approximate posterior of a (or a, a∗) using second order
Taylor expansion:

log p(a|y) ≈ log p(â|y)+(a−â)∇ log p(â|y)T−
1

2
(a−â)H(â)(a−â)T

Hence
aprop ∼ N(â + ∇ log p(â|y)H(â)−1,H(â)−1)

Possibilities for â:

I current value â = ak

I â: one-step Newton-Raphson from current value

I â mode of p(a|y):

aprop ∼ N(â,H(â)−1)



Normal approximation for toy example

Posterior and Normal
Approximation for (a, a∗)
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Normal approximation for toy example

Posterior and Normal
Approximation for (a, a∗)
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Conditional densities of a|a∗, y
and a∗|a, y at mode
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Use normal approximation for a and a∗ separately (conditional
distribution of a given (a∗, y) exactly normal).



Rabbits case study

Data: ten generation divergent selection study for rabbit uterine
capacity. Number of observations 2996 and 1161 animals in
pedigree. Various fixed effects and permanent random effects.

Bayesian inference for model with genetically structured variance
heterogeneity using either Langevin-Hastings (LH) or Normal
approximation (NX) for (a, a∗).

MCMC sample sizes needed to match precision of Monte Carlo
estimate with sample of 100 independent draws from posterior

LH NX (current) NX (one-step) NX (mode)

σ2
a 158800 8400 8700 7700

σ2
a∗

342000 12900 7700 7200
ρ 1090000 8800 7800 6700

Up to 100 times larger samples needed with LH (more correlated
samples than for NX). However, depending on implementation NX
may be between 6-20 times slower pr. iteration than LH.



Simulated data - varying ρ

Estimated posterior mean for ρ: -0.74.

Langevin-Hastings and Normal Approximation applied to simulated
data with varying true value of ρ: -0.74, -0.3, 0, 0.3, 0.74

MCMC sample size required to match 100 independent draws:

-0.74 -0.3 0 0.3 0.74

σ2
a NX 9300 5800 2900 4800 10100

LH 182600 16900 2600 35100 95500

σ2
a∗

NX 8600 3500 3800 4000 4800
LH 6300 1300 820 1300 7000

ρ NX 53200 5600 3000 5900 29200
LH 131400 15000 6300 78300 134200

Up to 20 times longer sample size needed for Langevin-Hastings
compared with normal approximation. However, normal
approximation much slower so no clear winner.



Sampling from normal approximation
Normal approximation N(â,H(a)−1) formally equivalent to
conditional distribution of a given ỹ = Za + ε̃ for ‘virtual’ data ỹ.

Use Garćıa-Cortés & Sorensen algorithm based on

a =
(

a− E[a|ỹ]
)

+ E[a|ỹ] = R + â

where ‘prediction error’ R = (a − E[a|ỹ]) and â = E[a|ỹ], ỹ
independent.

Hence if Rsim is a simulation of R then

asim = Rsim + â

is a conditional simulation of a given ỹ.

Generation of Rsim:

1. simulate (asim, ỹsim) from joint distribution of (a, ỹ) (use
Henderson factorization A = TDTT)

2. compute âsim = E[a|ỹsim] (mixed model equations)

3. return Rsim = asim − âsim.



Sparse matrix methods

Use general sparse matrix Cholesky decomposition for hessian H(â)
in normal approximation N(â,H(a)−1).

GMRFLib (H. Rue): general software in c for MCMC computation
in models with sparse precision matrix for random effects. E.g.
routines for computing updates using normal approximation.

Lots of useful tricks and advice in book Rue & Knorr-Held (2005).



Summary

I updates based on normal approximation may reduce
correlation in MCMC samples.

I advantage may partly be cancelled due to extra computational
cost

I no definite recommendation - depends on application -
experimenting required (GMRFLib helpful)

Further possibilities

I joint update of a and σ2
a .

I joint update of permanent and genetic random effects.
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