
Exercises

1. Lack of memory. Verify that the exponential distribution has the
“lack of memory” property, that is, if T is exponentially distributed
with parameter λ > 0 then so is T − t given that T > t for some t > 0.
How does this fit in with the fact that the hazard function is constant
for the exponential distribution ?

2. The log-normal distribution. A stochastic variable T is said to be
log-normally distributed if Y = log(T ) is normally distributed (with
parameters say, µ and σ2).

(a) Find the density of T .

(b) Verify that the log-normal hazard function h(t) has limt→0 h(t) = 0
and limt→∞ h(t) = 0. Why is this behaviour a restriction for the
applicability of the log-normal distribution in survival analysis ?

3. Mean residual lifetime. Let T be a continuous random variable
with survival function S(·). The mean residual lifetime function m(·)
is defined as

m(t) = E(T − t|T ≥ t).

(a) Prove that

m(t) =

∫∞
t
S(x)dx

S(t)
.

Also obtain h(t) and hence S(t) in terms of m(t), showing that
m(t) uniquely defines the distribution of T (hint: consider m′(t)).

Hint: for a nonnegative continuous resp. discrete random variable
X it holds that

E[X] =

∫ ∞

0

P (X > x)dx resp. E[X] =
∞∑
x=0

P (X ≥ x).

(b) Show that specifying a survival time distribution in terms of the
hazard, survival, density, or mean residual life time function is
equivalent, in the sense that if one function is known, then so are
all the other (see also KM page 35).

1



(c) Show that m(t) → ∞ as t→ ∞ for the log-normal distribution.

Hint:

lim
t→∞

m(t) = lim
t→∞

(
− d

dt
log f(t)

)−1

where f(t) is the p.d.f. of T . Hint follows by using L’Hospital
twice on the left hand side.

4. Show that Type II censoring is a case of independent censoring. That
is

P (T1 ∈ [t, t+ dt[|T1 ≥ t, T(r) ≥ t) = P (T1 ∈ [t, t+ dt[|T1 ≥ t)

Hint: the event {T1 ∈ [t, t + h[, T(r) > t} is equivalent to the event
{T1 ∈ [t, t+ h[, Tl ≥ t for at least n− r indices l in {2, . . . , n}}.

5. Likelihood for Type II censoring Suppose that we observe n in-
dividuals with iid survival times T1, . . . , Tn. Recall that in the case of
Type II simple censoring, the data consists of the first d order statistics
T(1), . . . , T(d) where 0 < d ≤ n is a predetermined number.

Verify that the density for (T(1), . . . , T(d)) is given by

n!

(n− d)!

d∏
i=1

f(t(i))(1− F (t(d)))
n−d

for t(1) < t(2) < · · · < t(d), where f and F denotes the common density
and distribution function for the survival times.

Hint:
Determine the density of T(1), . . . , T(d) by inspection of an integral ex-
pression for the joint distribution function P (T(1) ≤ t1, . . . , T(d) ≤ td).
Use the following identity to obtain this expression:

P (T(1) ≤ t1, . . . , T(d) ≤ td) =(
n

d

)
d!P (T1 ≤ t1, . . . , Td ≤ td, T1 < T2 < . . . < Td, Tl > Td, l = d+1, . . . , n)

6. Check that the actuarial estimate reduces to the usual empirical esti-
mate of the survivor function when there is no censoring (i.e. where
P (T ≥ tuk

) is estimated by
∑n

i=1 1(xi ≥ uk)/n = r(uk)/n).
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7. Score function of survival data likelihood In case of random in-
dependent noninformative censoring, the likelihood is of the form

n∏
i=1

hX(ti; θ)
δiSX(ti; θ).

Show that the score function of this likelihood has mean zero (assuming
usual regularity conditions). That is the so-called first Bartlett identity
holds. Hints:

(a) It is enough to consider the case n = 1.

(b) One approach: compute

E
d

dθ
log

[
fX(T ; θ)

∆SX(T ; θ)
(1−∆)

]
using ∆ = 1[X ≤ C] and T = min{X,C}.

(c) Another approach: the score is the derivative of the density g(t, δ; θ)
for (T,∆) as specified in the slides for the first lecture. Then use

1∑
δ=0

∫ ∞

0

g(t; δ; θ)dt = 1

to evaluate

E
d

dθ
log g(T,∆; θ).

8. The delta method. Suppose that
√
n(Tn−c) converges in distribution

to N(0, σ2) and that g is a continuously differentiable function. Verify
that

√
n(g(Tn)− g(c)) converges in distribution to N(0, σ2(g′(c))2).

Hints: Use the Taylor-expansion

g(t) = g(c) + (t− c)g′(c∗)

where |c∗ − c| < |t− c|. Use furthermore that if Xn converges in distri-
bution to X and Yn converges in probability to a constant y then for
any continuous function f on R2, f(Xn, Yn) converges in distribution
to f(X, y). Also use that if Xn converges in distribution to a constant
x then Xn also converges in probability to the constant x.
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Comment: if X has a small variance σ2 around the mean µ we in prac-
tice use the delta-method to conclude that Varg(X) is approximately
σ2(g′(µ))2.

Comment: more generally, the following holds: If
√
n(Tn − c) is a d-

dimensional vector converging in distribution to Nd(0,Σ) and g : Rd →
R is continuously differentiable then

√
n(g(Tn)−g(c)) converges in dis-

tribution to

N(0,
d∑

i,j=1

Σij
∂g

∂ti

∂g

∂tj
)

where Σij is the ijth entry in Σ and ∂g
∂ti

is the ith partial derivative of
g.

9. Greenwood’s formula Give a heuristic derivation of Greenwood’s
formula by applying the multivariate delta-method and assuming that
the p̂k = dk/r(uk−1) are uncorrelated and dk|r(uk−1) ∼ bin(r(uk−1), pk).

10. Show that the Kaplan-Meier estimate reduces to the usual empirical
estimate in case of no censoring. Also show that the Greenwood esti-
mate reduces to Ŝ(t)(1− Ŝ(t))/n in case of no censoring agreeing with
that nŜ(t) ∼ bin(n, S(t)) in case of no censoring.

Hint: let t∗1 < t∗2 < . . . denote the ordered death times. If t∗k ≤ t < t∗k+1

then Ŝ(t) = r(t∗k+1)/n. Also, with no censoring, d(t∗i ) = r(t∗i+1)− r(t∗i ).
Then rewrite the Greenwood estimate as a telescoping sum.

11. Show that the reduced sample estimator (see slides) is unbiased.

12. Klosterforsikring T. N. Thiele (1838-1910) was a famous Danish
mathematician, astronomist, and statistician. In 1872 he presented
computations of the distribution of the time TG between a birth of a
woman and her marriage. This was used in relation with establishment
of an annuity for women who never got married and thus needed finan-
cial support (details can be found in the post script document on the
course web page - it is fun reading).

Compute the actuarial estimate (and Greenwood standard error) for
the “survivor” function S(t) = P (time for marriage ≥ t), t = 1, 2, 3, . . .
(in years) using the Vemmetofte Kloster data (available from the web
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page). In the Vemmetofte data, x denotes age, Ix denotes the number
of women with age in [x− 1, x[ who were signed up in the Vemmetofte
Kloster, Gx is the number of women who were married in the age
[x − 1, x[, Dx is the number of women who died in the age [x − 1, x[,
Ux is the number of women with age in [x− 1, x[ who left Vemmetofte
Kloster for other reasons than death or marriage, and Ax is the num-
ber of women “at risk”/under observation at the beginning of [x, x+1[.
Thiele computed Ax as

Ax = Ax−1 + Ix −Gx −Dx − Ux+1,

that is, he regarded the Ux+1 censored women as being censored at time
x.

What is the estimated probability that a woman never becomes married
? What is the confidence interval for this estimate ?

Using least squares, Thiele fitted a parametric model given by

log10(S(t)/S(t+ 1)) = 10a−(log10(t−p)−b)2/c−10

where he estimated S(t + 1)/S(t) by the actuarial estimates of the
probability of not getting married in the interval [t, t + 1[ (note that
this is a model for discrete survival data where failures only happen
at times 0, 1, 2, . . .). He obtained the estimates 8.37476, b = 1.22588,
c = 0.104344, and p = 8.6363. Compare Thieles fitted model with your
actuarial estimate.

13. We first state an asymptotic result for the Kaplan-Meier estimate (see,
e.g. Lawless, J. F., 1982) in the case with random censoring where the
censoring times and the survival times have survivor functions G(·) and
S(·), respectively.

Let τ < ∞ satisfy S(τ) > 0, suppose that 1 − S(·) is absolutely con-
tinuous with density f and that G is continuous. Then the random
function √

n(Ŝ(t)− S(t)), 0 < t < τ

converges weakly (i.e. in distribution) to a mean zero Gaussian process
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(Xt)0<t<τ with covariance function

Cov(Xt1 , Xt2) = S(t1)S(t2)

∫ min(t1,t2)

0

f(u)

S(u)2G(u)
du.

Assume that the conditions for the asymptotic result are valid. Con-
sider the mean lifetime restricted to τ given by

µτ =

∫ τ

0

S(t)dt

and the associated estimate

µ̂τ =

∫ τ

0

Ŝ(t)dt

where Ŝ(·) is the Kaplan-Meier estimate.

(a) Show that µτ = Emin(T, τ) where T has survival function S(·).

Hint:
∫ τ

0
S(t)dt =

∫ τ

0

∫∞
t
f(u)du.

(b) Use the asymptotic result for Ŝ(·) to show that the asymptotic
variance of

√
nµ̂τ is given by∫ τ

0

A(u)2f(u)

S(u)2G(u)
du

where A(u) =
∫ τ

u
S(t)dt.

Hint: Note that asymptotically,

Var(
√
nµ̂τ ) =

∫ τ

0

∫ τ

0

Cov(
√
nŜ(u),

√
nŜ(v))dudv.

(c) In the special case where there is no censoring let τ → ∞ and
show that µ̂ = limτ→∞ µ̂τ reduces to the empirical mean of the
observed lifetimes and that the asymptotic variance from b. re-
duces to Var(T ).
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14. Simulation

(a) Consider survival data (Ti, δi) = (min(Xi, Ci), 1(Xi ≤ Ci)), i =
1, . . . , n, where Xi ∼ E(λ) and Ci ∼ E(ψ) are independent (and
E(ψ) denotes the exponential distribution with mean 1/ψ). For
given λ > 0 and p ∈]0, 1[ determine ψ so that the probability of
censoring equals p.

(b) Let n = 100, λ = 1/5 and simulate data sets with expected num-
ber of censored observations equal to 1, 10, 50, 90, 99. Compute
and plot Kaplan-Meier estimates for the simulated data sets.

Hint: you may find the R-procedures rexp, survfit, and plot.survfit
helpful.

15. Use the R procedures survfit and plot.survfit to compute and plot
survivor functions for the two treatment groups (prednison or placebo)
in the cirrhosis data set. Use survdiff to test for equal survival in the
two groups.

16. Hypergeometric distribution LetX1 ∼ bin(n1, p1) andX2 ∼ bin(n2, p2)
be independent binomial random variables. Assume p1 = p2 = p.

(a) Let x = x1 + x2 and n = n1 + n2. Show that

P (X1 = x1|X1 +X2 = x) =

(
n1

x1

)(
n−n1

x−x1

)(
n
x

) ,

i.e. the conditional distribution of X1 given the sum is a hyperge-
ometric distribution (that does not depend on p).

(b) Show that the mean and the variance of the above hypergeometric
distribution are

n1
x

n
and

n1x(n− n1)(n− x)

n2(n− 1)

17. Suppose that T has hazard function

λ(t) = λ0(t) exp(zβ)

and that g is a strictly increasing and continuously differentiable func-
tion. Show that T̃ = g(T ) has hazard function

λ̃(t) = λ0(g
−1(t)) exp(zβ)/g′(g−1(t)).
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18. Suppose that T1, . . . , Tn are independent continuous survival times with
hazard rates λi, i = 1, . . . , n. Let T = min(T1, . . . , Tn) and verify that
the hazard rate of T is given by λ(t) =

∑n
i=1 λi(t).

Hint: use that the survivor function for T is given by

P (T ≥ t) =
n∏

i=1

P (Ti ≥ t).

19. log rank vs. score test. Consider the Cox’s proportional hazards
model in the case where the covariates are of the form

zi =

{
1 if ith individual got treatment no. 1

0 if ith individual got treatment no. 2

The score test statistic for no treatment effect is given by

u(0)2/j(0)

where u(β) and −j(β) are the first and second derivatives of the log
Cox’s partial likelihood. Assume that there are no tied death times and
check that the score test statistic coincides with the log rank statistic.

20. Poisson process. Consider a counting process N(t), t ≥ 0, and let
T1, T2, . . . denote the jump times of N(t), t ≥ 0. Let Wi = Ti − Ti−1,
i = 1, 2, . . . be the waiting times between the jump times (letting T0 =
0). Then N(t), t ≥ 0, is Poisson process with rate λ > 0 if and only if

C1 The Wi are independent and exponentially distributed with rate λ
(i.e. mean 1/λ).

Suppose N(t) is a Poisson process. Show that for any t > 0, N(t) is
Poisson distributed with mean λt. Actually one can show that C1 is
equivalent to the following to conditions:

C2 For 0 < s < t, N(t) − N(s) is Poisson distributed with mean
λ(t− s).

C3 For 0 < s1 < t1 < s2 < t2, N(t1)−N(s1) and N(t2)−N(s2) are in-
dependent (i.e. the Poisson process has independent increments).
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Suppose that N(t), t ≥ 0, is a Poisson process with rate λ. Show that
M(t) = N(t)−λt, t ≥ 0, is a martingale (i.e. show that E[M(t)|N(s)] =
M(s) for 0 ≤ s < t).

21. Consider the actuarial estimate in the case where there is no censoring
and recall that p̂i = 1 − q̂i = (ni − di)/ni where ni is the number
of persons alive just before time ti and di is the number of deaths in
[ti, ti+1[. Show by counter example that p̂i and p̂j are not independent
even though Cov(p̂i, p̂j) = 0 (hint: consider e.g. p̂0 and p̂1).

22. Interval censoring Let T be a survival time with the exponential
distribution Exp(λ) where λ = ET = 3. Assume that T is interval
censored so that we only observe

X =


1 if T ≤ 1,

T if 1 < T < 3,

3 if 3 ≤ T.

(a) Plot the distribution function of X.

(b) Find the density of X (with respect to the sum of Lebesgue and
counting measure on {1, 3}), i.e. a function f : R → R+ so that

P (X ≤ x) =

∫ x

0

f(z)dz + f(1)1(1 ≤ x) + f(3)1(3 ≤ x).

23. Suppose that the survival times T1, . . . , Tn follow Cox’s proportional
hazards model and there is no censoring. Verify that the likelihood
based on the ranks R1, . . . , Rn,

P (R1 = r1, . . . , Rn = rn) = P (Tr1 < . . . < Trn)

is Cox’s partial likelihood.

Hint: write down the integral for the right hand side and solve it ‘back-
wards’ by the method of substitution.

More elaborate hint: assume for ease of notation and without loss of
generality that ri = i, i = 1, . . . , n. Then the partial likelihood is

n∏
i=1

exp(zTi β)∑n
j=i exp(z

T
j β)

=
n∏

i=1

1

ai
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where an = 1 and ai =
∑n

j=i+1 exp((zj − zi)
Tβ) + 1, i = 1, . . . , n − 1.

Also note that under the proportional hazards model,

Sl+1(u) = Sl(u)
exp((zl+1−zl)

Tβ).

One can now show that (using integration by substitution)∫ ∞

v

fl(u)Sl+1(u)
al+1du =

1

al
Sl(v)

al .

This can be used for the stepwise solution of the integral.

24. A Brownian motion {B(s)}s≥0 is a continuous-time zero-mean Gaussian
process1 with B(0) = 0 and Cov(B(s), B(t)) = min(t, s) for s, t ≥ 0.

� Show that a Brownian motion has uncorrelated and hence inde-
pendent increments over disjoint intervals.

� show that a Brownian motion is a martingale with respect to its
own history:

E[B(t)|B(u), 0 ≤ u ≤ s] = B(s).

25. Show heuristically that if M is a martingale and K is a predictable
process (both with respect to (Ft)t≥0) then

(a) M̃(t) =
∫ t

0
K(u)dM(u) is a martingale.

(b) M̃ has predictable variation process < M̃ > (t) =
∫ t

0
K(u)2d <

M> (u).

26. Show that a martingale has uncorrelated increments (over disjoint in-
tervals).

27. Show that using the timedependent covariate zi(t) = ai+ bt for the ith
subject in a Cox regression is the same as using age ai at t = 0 as a
fixed covariate.

1I.e. all finite-dimensional distributions are Gaussian

10


