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In this unit we consider the analysis of multiple causes of failure in the
framework of competing risk models. An excellent reference on this material
is Chapter 8 in Kalbfleisch and Prentice (2002), or Chapter 7 in the 1980
edition.

1 Introduction and Notation

Consider an example involving multiple causes of failure. Women who start
using an intrauterine device (IUD) are subject to several risks, including
accidental pregnancy, expulsion of the device, removal for medical reasons
and removal for personal reasons. K-P discuss three areas of interest in the
analysis of competing risks such as IUD discontinuation:

1 Studying the relationship between a vector of covariates x and the rate
of occurrence of specific types of failure; for example the covariates of
IUD expulsion.

2 Analyzing whether people at high risk of one type of failure are also at
high risk for others, even after controlling for covariates; for example
are women who are at high-risk of expelling an IUD also at high risk
of accidental pregnancy while wearing the device?

3 Estimating the risk of one type of failure after removing others; for
example how long would we expect women to use an IUD if we could
eliminate the risk of expulsion?

It turns out that we can answer the first of these questions, but the other
two are essentially intractable. The third question can be answered under
the strong assumption that the competing risks are independent, which es-
sentially assumes away the second question.
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We start by introducing some notation. Let T be a continuous r.v. rep-
resenting survival time. We assume that when failure occurs it may be
one of m distinct types indexed by j ∈ {1, 2, . . . ,m}, and we let J be a
r.v. representing the type of failure. Also, we let x be a vector of covariates.

1.1 Cause-Specific Hazards

We define the overall hazard rate as usual:

λ(t, x) = lim
dt→0

Pr{t ≤ T < t + dt|T ≥ t, x}
dt

.

We will also define a cause-specific hazard rate, representing the instanta-
neous risk of dying of cause j:

λj(t, x) = lim
dt→0

Pr{t ≤ T < t + dt, J = j|T ≥ t, x}
dt

.

In words, we calculate the conditional probability that a subject with covari-
ates x dies in the interval [t, t + dt) and the cause of death is the j-th cause,
given that the subject was alive just before time t. We turn the probability
into a rate dividing by dt and then take the limit as dt → 0.

By the law of total probability, we have

λ(t, x) =
m∑

j=1

λj(t, x),

because failure must be due to one (and only one) of the m causes. If two
types of failure can occur simultaneously we define the combination of the
two as a new type of failure, so we can maintain this assumption.

1.2 Integrated Hazard and Survival

The overall survival function can be defined as usual:

S(t, x) = e−Λ(t,x),

where Λ(t, x) is the cumulative risk obtained by integrating the overall haz-
ard

Λ(t, x) =
∫ t

0
λ(u, x)du.

We have assumed that the covariates are fixed to keep the notation simple.
Extension to time-varying covariates is fairly straightforward, but calcu-
lation of the survival function requires specifying the trajectory of time-
varying covariates.
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The function S(t, x) has a clear meaning as the probability of surviving
all types of failure up to time t.

We will also define, by analogy with S(t, x), the function

Sj(t, x) = e−Λj(t,x),

where Λj(t, x) is the integrated or cumulative hazard for case j;

Λj(t, x) =
∫ t

0
λj(u, x)du.

Note, however, that

Note 1 Sj(t, x) will not, in general, have a survivor function interpretation
if m > 1.

1.3 Cause-Specific Densities

We can also define a cause-specific density of failures at time t, say

fj(t, x) = lim
dt→0

Pr{t ≤ T < t + dt, J = j|x}
dt

= λj(t, x)S(t, x).

This density represents the unconditional risk that a subject dies at time
t of cause j. By the law of total probability, the overall density of deaths at
time t is

f(t, x) =
m∑

i=1

fj(t, x).

2 Estimation: One Sample

Consider first the homogeneous case with no covariates.

2.1 Kaplan-Meier

The Kaplan-Meier estimator can easily be generalized to include competing
risks. Let

tj1 < tj2 < . . . < tjkj

denote the kj distinct failure times for failures of type j. Let nji denote the
number of subjects at risk just before tji and let dji denote the number of
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deaths due to cause j at time tji. Then the same arguments used to derive
the usual K-M estimator lead to

Ŝj(t) =
∏

i:tji<t

(
1− dji

nji

)
.

It is interesting to note that Ŝ(t) is exactly the same as the standard K-M
estimator that one would obtain if all failures of type other than j were
treated as censored cases.

If there are no ties between different types of failure, then

Ŝ(t) =
m∏

j=1

Ŝj(t),

so the K-M estimator of the overall survival is the product of the K-M
estimators of the cause-specific survivor-like functions.

2.2 Nelson-Aalen

The Nelson-Aalen estimator of the cause-specific cumulative hazard is

Λ̂j(t) =
∑

i:tji<t

dji

nji
,

and corresponds to an estimate of the cause-specific hazard λj(t) that takes
the value dji/nji at tji and 0 elsewhere. An alternative estimate based on
K-M is

Λ̂j(t) = − log Ŝj(t).

Of course one could also exponentiate minus the Nelson-Aalen integrated
hazard to obtain an alternative estimator of the cause-specific survivor-like
function Sj(t).

3 Estimation: Regression Models

Suppose we have n observations consisting of four pieces of information each:

(ti, di, ji, xi),

where ti is the observation time, di is a death indicator (1 if dead, 0 if
censored), ji is a cause of death index (takes a value between 1 and m for
deaths and is undefined for censored cases), and xi is a vector of covariates.
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3.1 The Likelihood Function

Under non-informative censoring the likelihood function can be written as

L =
n∏

i=1

λji(ti, xi)diS(ti, xi).

This likelihood is constructed in the usual manner. A subject censored at
time ti contributes the probability of being alive at that time :

S(ti, xi).

A subject observed to die at time ti of cause ji contributes the density of
deaths of that cause at that time fji(ti, xi), which can be written in terms
of the hazard and survivor functions as

λji(ti, xi)S(ti, xi).

Introducing the indicator di allows us to write the two types of terms in a
compact way.

Recalling that S(ti, xi) =
∏

Sj(ti, xi), we can write the likelihood as

L =
n∏

i=1

λji(ti, xi)di

m∏
j=1

e−Λj(ti,xi).

Let dij indicate whether subject i died of cause j. Clearly di =
∑

j dij ,
because you can die of at most one cause. We can then write

L =
m∏

i=1

m∏
j=1

λj(ti, xi)dije−Λj(ti,xi).

Because the order in which we multiply is immaterial, we can state two
important results:

Note 2 The overall likelihood function is a product of m likelihoods, one
for each type of failure.

This means that we can estimate the λj(t, x) by maximizing separate
likelihoods, as longs as they do not depend on the same parameters. More-
over,

Note 3 The likelihood involving a specific type of failure is exactly the same
likelihood you would obtain by treating all other types of failures as censored
observations.

In other words, each of these likelihoods has exactly the same form that
we have studied before. Fitting models is thus a question of applying what
we already know.
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3.2 Weibull Regression

Suppose the j-th hazard function follows a proportional hazards model with
Weibull baseline, say

λj(t, x) = λj0(t)ex′β,

where the baseline hazard is

λj0(t) = λjpj(λjt)pj−1.

In view of the above results, we can estimate the parameters (pj , λj , βj)
using the techniques discussed before, simply by treating failures for causes
other than j as censored cases.

Note that we have allowed all parameters to depend on the cause of
death. We could, if we wanted, use different x’s for each type of failure.

If we wanted to restrict all the Weibulls to have the same index, for
example, so pj = p∀j, then the overall likelihood function would not factor
out and we would not be able to use this simplification. The same would be
true if we wanted to force some β’s to be equal across causes (but why?).
In either case one would have to maximize the full likelihood.

3.3 Cox Regression and Partial Likelihood

We can also fit a proportional hazards model without any assumptions about
the baseline hazards λj0(t). The standard Cox argument leads to a partial
likelihood

L =
m∏

j=1

kj∏
i=1

e
x′

ji(j)
βj∑

k∈R(tji) ex′
jk

βj
,

where kj is the number of distinct times of death due to cause j, tji denotes
the i-th such time, R(tji) is the risk set at time tji and i(j) is the index of
the case that died at tji. Again:

Note 4 The overall partial likelihood is a product of m partial likelihoods,
one for each type of failure, and each identical to the partial likelihood one
would obtain by treating all other causes of death as censored cases.

If you wanted to restrict the m baseline hazards so they are in turn
proportional to a super-baseline, say

λj0(t) = λ0(t)eγj ,

then a different partial likelihood would be obtained; see Equations 8.15-8.16
in K-P.

6



3.4 Piece-wise Exponential Survival

Here’s my favorite model in the context of competing risks. Following the
standard argument in Holford or Laird and Olivier, we define intervals with
breakpoints 0 = τ1 < τ2 < . . . < τk1 = ∞, and assume that the baseline
hazard for the j-th type of failure is a step function with a constant value
in each interval:

λj0(t) = λjk, for t ∈ [τk, τk+1).

Then the factor in the likelihood function corresponding to failures of type
j is identical to the kernel of a Poisson likelihood that treats the number of
deaths of cause j in interval k to people with covariate values xi as Poisson
with mean

µijk = Eikλjke
x′

iβj ,

where Eik is the total exposure of people with covariates xi in interval k.
(Note that the exposure is not cause-specific, at any time each subject is at
risk of dying from any cause.)

Thus, we can fit competing risk models by running a series of Poisson
regressions where we treat the number of deaths due to each cause as the
outcome and the exposure to all causes as the offset.

A nice feature of this model concerns the conditional probability of dying
due to cause j at time t given that the subject dies (of some cause) at time
t. The probability of dying of cause j at time t given survival to just before
t is

λj(t, x) = λj0(t)ex′βj = eαjk+x′βj ,

say, where αjk = log λjk is the log baseline risk for cause j in interval k.
Now the overall risk at that instant is

λ(t, x) =
m∑

j=1

λj(t, x) =
m∑

j=1

eαjk+x′βj .

The conditional probability of interest can then be obtained as

πjk =
eαjk+x′βj∑m

r=1 eαrk+x′βr
,

and can be seen to follow a multinomial logit model with the same param-
eters βj as the competing risk model!

This means that we can break down the analysis of competing risks into
two parts, using

1 a standard hazards model to get the overall risk, and
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2 a multinomial logit model on cause of death.

The results would be exactly the same as fitting separate Poisson models
to failures of each type.

4 The Identification Problem

So far we have focused on observable quantities. The literature on competing
risks defines latent failure times

T1, T2, . . . , Tm

where Tj is the time when the subject would fail due to the j-th cause.
The problem, of course, is that we only observe the shortest of these, as

well as an index which tells us which of the T ’s we have observed. Formally,
the data are realizations of two r.v.’s

T = min{T1, T2, . . . , Tm}
J = {j : Tj ≤ Tk∀ k}

4.1 Multivariate and Marginal Survival

Let us introduce a joint survivor function, also called the multiple decrement
function

SM (t1, t2, . . . , tm) = Pr{T1 ≥ t1;T2 ≥ t2; . . . ;Tm ≥ tm}.

Extension to covariates is trivial, so I will keep the notation simple by omit-
ting them.

To be alive at time t all of these potential failure times have to exceed t.
This gives us a key identity relating the multivariate and marginal survival
functions:

S(t) = SM (t, t, . . . , t).

This shows, incidentally, that S(t) is well defined.
We can also define the cause-specific hazards in terms of partial deriva-

tives of the log of the multivariate survival function:

λj(t) = lim
dt→0

Pr{t ≤ Tj < t + dt|T > dt}
dt

,

= − ∂

∂tj
log SM (t, t, . . . , t).

8



The multivariate survival function is a function of t1, t2, . . . , tm. The
last line refers to the log of the partial derivative w.r.t. tj evaluated at
t1 = t2 = . . . = tm = t. The calculation is conditional on the overall survival
time T being at least t. As a result, the event t ≤ Tj < t + dt is equivalent
to the events t ≤ T < t + dt and J = j. Thus, the result is the same as the
cause-specific hazard introduced earlier.

Note 5 Because the likelihood of the data depends only on the cause-specific
hazards λj(t), it follows that only these hazards or functions of them can be
estimated. Other quantities are not identifiable.

For example the marginal distributions of the latent failure times are not
identifiable. Let

S∗j (t) = Pr{Tj ≥ t}
= SM (0, . . . , 0, t, 0, . . . , 0),

where the t appears as the j-th argument to SM (), denote the marginal
distribution of Tj . From this marginal survival we can define a marginal
hazard

λ∗j (t) = − d

dt
log S∗j (t).

This marginal hazard λ∗j (t) is not in general the same as the cause-specific
hazard λj(t). In fact, it cannot be written as a function of λj(t) without
further assumptions. It is therefore not identifiable.

Here comes the big exception. If the latent times Tj are mutually inde-
pendent then

SM (t1, . . . , tm) =
m∏

j=1

S∗j (tj).

It then follows that
S∗j (t) = Sj(t),

so the marginal survival is the same as the cause-specific survivor-like func-
tion we introduced before, and

λ∗j (t) = λj(t),

so the marginal hazard is the same as the cause-specific hazard (and is
therefore identified).

There is a catch, however. Because the multivariate survival function
cannot be estimated, the hypothesis of independence cannot be tested.
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In other words, when all you observed is the minimum of the latent
times, you cannot distinguish between independent competing risks and
infinitely many dependent competing risks that produce exactly the same
cause-specific hazards.

4.2 A Bivariate Example

In case you still believe that competing risks models are identified, here is a
counter example. The following equation shows a bivariate survival model

S(t1, t2) = exp{1− α1t1 − α2t2 − eα12(α1t1+α2t2)},

where α1, α2 > 0 and α12 measures the dependence between T1 and T2.
Taking logs and differentiating w.r.t. tj we find the cause-specific hazards

to be
λj(t) = αj(1 + α12e

α12(α1+α2)t)

and it is clear that all three parameters can be estimated.
Consider, however, a model of independent competing risks, where the

marginal (and cause-specific hazards) are given by the above equation. In-
tegrating the marginal hazards we obtain the marginal cumulative hazards
and exponentiating minus those gives the marginal survival functions. Mul-
tiplying the two survivor functions together we obtain the joint survivor
function

S(t1, t2) = exp{1− α1t1 − α2t2 −
α1e

α12(α1+α2)t1 + α2e
α12(α1+α2)t2

α1 + α2
},

and clearly α12 is not a measure of association because by construction T1

and T2 are independent!
The point here is that the two bivariate survivor functions are different—

moreover, in one case the latent times are correlated while in the other they
are independent—yet they lead to the same cause-specific hazards and thus
have the same observable consequences.

Thus, if you use the first model and interpret α12 as a measure of asso-
ciation between the causes you are relying on untestable assumptions.

4.3 Discussion

The identification problem does not arise if one can observe more than one
Tj , but this is usually not feasible. An exception is attrition in panel studies,
where one can treat death and attrition as competing risks. It may be pos-
sible to have special follow-up studies of attriters to determine if death has
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occurred. Having both time to attrition and time to death allows estimation
of the correlation between these outcomes.

Heckman has proposed identifying the marginal survival functions by
introducing covariates that are supposed to affect one of the latent times but
not the others. The problem, again, is that these assumptions themselves
are not testable. You cannot check whether a covariate really has no effect
on a given type of failure, you have to assume it.

Regrettably, this means that we cannot achieve objective 2 at all:

Note 6 Data on time to death and cause of death do not permit studying
the relationship among failure modes, or even testing for independence.

It also means that we can achieve the third objective in only a limited
sense:

Note 7 We can only estimate survival following cause-removal under the
untestable assumption that the competing risks are independent.

Of course we are talking about independence given the observed covari-
ates x, so if you have measured every conceivable covariate the assumption
of independence would not be unreasonable.

A final note on terminology. The overall probability of failure due to
cause j in some interval A is∫

A
λj(t, x)e−Λ(t,x)dt;

the subject survives all causes up to time t, then dies of cause j.
The same probability if only cause j was operating is, under the assump-

tion of independence ∫
A

λj(t, x)e−Λj(t,x)dt;

the subject survives cause j up to time t, then dies of cause j.
In the statistical literature these are called crude and net probabilities,

respectively. The demographic literature is not consistent. To avoid con-
fusion it is best to refer to the latter as cause-deleted. In this example all
causes other than j have been deleted.
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