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Understanding Cox's Regression Model: 

A Martingale Approach 
RICHARD D. GILL* 

An informal discussion is given of how martingale tech- 
niques can be used to extend Cox's regression model and 
to derive its large sample properties. 

KEY WORDS: Censoring; Survival data; Partial likeli- 
hood; Counting processes; Asymptotic theory. 

SUMMARY 
Cox's (1972) regression model for analyzing censored 

survival data, allowing for covariates, has enjoyed an 
enormous success among applied statisticians. It ele- 
gantly combines the advantages of both parametric and 
nonparametric approaches to statistical inference, and it 
is beautifully adapted to the kind of data one will obtain 
in clinical cancer trials and other sources of survival data 
and life-testing data. By incorporating time-varying, ran- 
dom covariates, it becomes a highly flexible tool for 
model building. 

Despite this its mathematical basis so far is somewhat 
heuristic. Just to provide motivation for the estimators 
used, Cox (1975) had to iritroduce a new principle for 
inference, based on the concept of partial likelihood. 
Many papers contain asymptotic results on the estimators 
(Liu and Crowley 1978; Tsiatis 1978a,b,1981a,b; Link 
1979; Bailey 1983; Naes 1981,1982; and Sen 1981) con- 
firming Cox's conjectures, but all are restricted to very 
special cases. Moreover, in all cases derivations are 
highly complex and technical. For instance, simple for- 
mulas for limiting variances appear as if by surprise after 
lengthy computations, in the course of which complicated 
terms cancel one another out. 

The purpose of this article is to discuss recent work by 
Andersen and Gill (1982) that shows how a firm mathe- 
matical basis can be given to the model (in its fullest gen- 
erality) from which asymptotic properties can be derived 
in a completely natural way. The mathematics is based 
on the statistical theory of counting processes developed 
by Aalen (1976,1978). In brief, the idea is as follows. The 
original hazard rate definition of Cox's model can be di- 
rectly interpreted as specifying the stochastic intensity of 
a multivariate counting process (counting occurrences of 
the event "death" for each of the individuals under ob- 
servation). This connects immediately with modern mar- 
tingale and stochastic integral theory, very powerful and 
deep mathematical tools that are, on the other hand, often 

* Richard D. Gill is Chief of the Department of Mathematical Statis- 
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no more than a mathematical formulation of many of the 
intuitive ideas one has, for instance, concerning what 
kinds of censoring may be allowed and what kinds of 
covariates. Naes (1982) and Sen (1981) use discrete time 
martingale theory in an iid setup. However, we feel that 
continuous time methods are much more appropriate. 

After sketching this theory on an intuitive level, we 
indicate how asymptotic properties of the estimator sim- 
ply follow from this formulation of the model (Andersen 
and Gill 1982). 

1. INTRODUCTION 

It is possible to read this article at several different 
levels. At the most obvious level, the article summarizes 
some problems concerning Cox's regression model and 
indicates solutions to these problems that are further de- 
veloped in Andersen and Gill (1982). 

At the same time, the present article gives just a hint 
of how Cox's regression model can be extended in many 
useful ways. Also, taking Cox's model as an example, 
the article contains an introduction on a very intuitive 
level to the statistical theory of counting processes that 
is currently being used, following the work of Aalen 
(1976), to unify and extend many branches of nonpara- 
metric survival analysis. Finally, we hope the article will 
encourage those analyzing censored survival data to 
make use of the model. Even if a clinical cancer trial is 
designed to answer a simple yes/no question on the rel- 
ative benefits of two treatments, there is no reason why 
after the trial, the data should not also be analyzed in a 
more exploratory fashion to look for variables or com- 
binations of variables of prognostic importance and to 
quantify their simultaneous effects, or to look more 
closely at how a particular treatment influences survival 
(perhaps it only improves the hazard rate during the 
course of treatment and has no lasting effect). 

Though the mathematics may at first sight seem for- 
midable, we want to emphasize the fact that the methods 
are a natural formalization of the heuristic derivations of, 
for instance, Mantel (1966, p. 169) or Cox (1975, p. 274). 
This is in contrast to the classical approach to survival 
analysis, which has been to solve the problem using tools 
derived from classical nonparametric theory. To over- 
simplify, this has forced us to direct attention to situations 

? Journal of the American Statistical Association 
June 1984, Volume 79, Number 386 

Theory and Methods Section 

441 

This content downloaded from 130.225.198.224 on Mon, 12 Oct 2015 10:53:11 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


442 Journal of the American Statistical Association, June 1984 

with iid observations and to special censoring models 
(random censorship, for instance) and away from meth- 
ods based on hazard rates and the development of a proc- 
ess as time moves forward. 

A second point we want to emphasize is that although 
the mathematical presentation in this article is entirely 
informal, everything we say can be made rigorous. 

We next describe briefly the structure of the article. In 
Section 2 we give a specification of Cox's regression 
model in quite restrictive terms, just as it was first intro- 
duced. We also summarize the statistical procedures re- 
lated to the model and give an indication of the contro- 
versy that has surrounded them. In Section 3 we give an 
equivalent reformulation of the model in terms of the in- 
tensities of counting processes, and in Section 4 we de- 
scribe the martingale theory, which will solve many of 
our problems. In Section 5 we show how this theory can 
be used to derive asymptotic properties of the statistical 
procedures appropriate to the model. In Section 6 we 
discuss some open questions. 

2. FIRST SPECIFICATION OF THE MODEL 

We specify the model as follows. Let Ti, i = 1, . . 

n, be independent continuously distributed positive ran- 
dom variables representing the times of death of n indi- 
viduals, each of whom can only be observed on a fixed 
time interval [0, ci] for certain censoring times ci, i = 1, 
.. ., n. Suppose that individual i has hazard rate 

Xi(t) = lim - P[Ti ' t + h I Ti ' t] (2.1) 
hO h 

of the special form 

Xi(t) = Xo(t) exp (Io'zi(t)), (2.2) 

where P3o' is the transpose of a (column) vector Po of p 
unknown coefficients, zi is a column vector of p possibly 
time-varying covariates, and ko is a fixed unknown base- 
line hazard rate for an individual with z 0. The obser- 
vations for the ith individual consist of Ti A ci, bi = I{Ti 
< ci}, and zi(t), t E [0, Ti A ci]. Here A denotes minimum 
and I{ } is the indicator random variable for the specified 
event. We are interested in estimation of, or hypothesis 
testing on, the parameter P3o, while ko assumes the status 
of an infinite dimensional nuisance parameter. The model 
can thus be termed semiparametric. 

For the interpretation of the model and for examples 
of how covariates zi can be chosen, we refer to Cox 
(1972), Miller et al. (1980), Andersen (1982), and Kalb- 
fleisch and Prentice (1980). 

Let 

R=(t) ={i: Ti : t and ci 2 t} 

denote the risk set at time t, that is to say, the set of 
individuals i under observation at time t. Given RJ(t) and 
that at time t one individual in R(t) is observed to die, 
the probability that it is precisely individual i can be cal- 

culated as 

exp(,po'zi(t)) / E exp(,B0'zj(t)); 
jEEJ(t) 

a factor Xo(t) has canceled out in numerator and denom- 
inator. Because Ao is completely arbitrary, it seems rea- 
sonable that what is observed in the intervals of time 
between observed deaths does not contain any infor- 
mation on ,Bo. Cox therefore proposed that statistical in- 
ference on Po could be carried out by considering 

?(3) = n exp(P'zj(T;)) (2.3) 
jEIt T) 

as a likelihood function for 13, to which standard large- 
sample maximum likelihood theory could be applied. 
Each term in this product is the probability that at the 
time Ti of an observed death, it is precisely individual i 
who is observed to die. 

Whether II(f) is some sort of likelihood function has 
given rise to much discussion in the literature. It certainly 
is not a conditional likelihood, that is, a likelihood func- 
tion for ,B based on the conditional distribution of the data 
given some statistic. Nor is it generally a marginal like- 
lihood, that is, a likelihood based on the marginal distri- 
bution of some reduction of the data. Cox (1975) intro- 
duced the notion of partial likelihood to remedy this 
defect and showed that T(P) is one (to date, the most 
important) example of partial likelihood. 

Whatever sort of likelihood _T(1) may be, it is still not 
clear that standard large-sample maximum likelihood the- 
ory will lead to valid asymptotic (i.e., in practice, ap- 
proximate) results for inference on P3o. Much effort has 
been spent in deriving rigorously the required asymptot- 
ics: All of the work so far (using classical methods) is 
very complicated and restricted in scope but does give 
the hoped-for results. In his partial likelihood paper, Cox 
gave a very brief sketch of how asymptotic results might 
be derived. Though it is not recognized as such, there is 
the germ of a martingale argument in this sketch, a fact 
that will be of great significance. 

Before taking this point further, let us mention a related 
class of problems concerning possible extensions to the 
model. Can we allow other types of censoring than the 
fixed censoring specified above? Can we allow covariates 
to be random processes Zi rather than fixed functions? 
In this context it is fascinating that by very curious 
choices of random covariates, one can derive all of the 
well-known nonparametric k-sample tests for censored 
survival data as score tests based on IN(1) for the hy- 
pothesis P3o = 0 (see Oakes 1981 and Lustbader 1980). 
Can we model more complicated situations with repeated 
events or events of different types (rather than the single 
event "death") in the life of any individual? In all cases 
it is easy to write down analogs to ?E(1), but it is not 
obvious that they will still have the same properties. 
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3. SECOND SPECIFICATION OF THE MODEL 

We will reformulate Cox's regression model as a model 
for the random intensity of a multivariate counting proc- 
ess. Let us first discuss the meaning of these terms. A 
multivariate counting process 

N = {Ni(t): 0 < t < oo; i = 1, ... , n} 

is a stochastic process with n components that can be 
thought of as counting the occurrences (as time t pro- 
ceeds) of n different types of event (or the same event 
for n different individuals). We suppose these events 
occur singly. The realizations of each component Ni(-), 
seen as functions of t, are integer-valued step functions, 
zero at time zero, with jumps of size + 1 only. We also 
suppose them to be right-continuous, so that Ni(t) is the 
(random) number of events of type i in the time interval 
[0, t]. No two components jump at the same time. 

N. (t) 

4 

2 

_ t~~~~~~~~ 

Under regularity conditions, which need not concern 
us, the process N has an intensity process 

A = {Ai(t): 0 c t < oo; i = 1, . n . , 

defined by 

Ai(t)dt = P[Ni jumps in a time interval of 
length dt around time t | j;t-I (3.1) 

where t - denotes the past up to the beginning of the 
small time interval dt, that is, everything that has hap- 
pended until just before time t. Here we include a com- 
plete specification of the paths Nj( ), j = 1, . . , n, on 
[0, t), as well as all other events implicitly or explicitly 
included in the model that can be thought of as having 
occurred before time t. 

Let us take as an example a very simple multivariate 
counting process, each component of which jumps at 
most once. In Cox's model in Section 3, we define 

Ni(t) = I{Tf i t, Ti cil}. 

So Ni jumps once, if at all, at time Ti ' ci of individual 
i's observed death. What can be said about Ai in this case? 
Given what has happened before the time interval dt, we 
know that individual i died at the observed time Ti less 
than t and less than the censoring time ci, or that indi- 
vidual i was censored at time ci < t, or that individual i 
is still alive and uncensored. In the first two cases, we 
know that Ni either has made its only jump or will never 
jump, so the probability of a jump in the interval dt is 
zero. In the last case, we know that Ti E dt or T1 ' t, so 
by (2.1) the probability of a jump in the interval dt is 

Xi(t)dt. Thus, defining 

Yi(t) = If Ti '- t, ci:- t} 

= 1 if individual i is under observation 
just before time t 

= 0 otherwise, (3.2) 

we have by (2.2) and (3.1) 

Ai(t)dt = Yi(t)Xo(t)exp{j3o'zi(t)}dt. 

Note that given the past up to (but not including) time t, 
Yi(t) and Ai(t) are fixed or nonrandom. We say in such 
a case that Yi and Ai are predictable. 

An obvious extension of Cox's regression model is 
now: N is a multivariate counting process with intensity 
process A satisfying 

Ai(t)dt = Yi(t)0Xo(t)exp{fo'Zi(t)}dt. (3.3) 

Here we have replaced the fixed covariate zi(t) by the 
random covariate Zi(t). We no longer require each Ni to 
make at most one jump, nor do we require Yi to be of the 
special form given in (3.2). All we require is that Ni, Yi, 
and Zi are processes that can be observed and that Yi and 
Zi are predictable (Yi(t) and Zi(t) are fixed given what 
has happened before time t). This condition is forced on 
us by the meaning of Ai(t) as the intensity or rate with 
which Ni jumps given the past. This also restricts Yi to 
being nonnegative. 

Consider an example in which we wish to model the 
effects of a drug that is given to the treatment group over 
a possibly varying length of time; there is also a control 
group. We might want to investigate whether the drug 
has a different effect during treatment from its effect after 
treatment has ended. To this end we could define two 
components of Zi, say the first two, as follows: 

Zi (t) = 1 during the treatment of a patient 
in the treatment group 

= 0 otherwise; 

Zi2(t) = 1 after treatment of a patient in the 
treatment group 

= 0 otherwise. 

If the two corresponding components of ,Bo are negative, 
the treatment is effective; if, moreover, the first com- 
ponent is significantly larger in absolute value than the 
second, then the effect of the treatment apparently has 
declined after treatment has stopped. Many variations 
on this kind of model are possible and sensible. Note that 
we do not require the treatment period for each patient 
to be fixed beforehand; it may be adapted or curtailed 
by, say, the occurrence of side effects. One might even 
include the occurrence of side effects as yet another 0- 
1 component of Z7. The only restriction is that ZI(t) must 
indicate the status of the ith patient just before time t. 

For an example in which the processes Ni may have 
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several jumps, see Andersen and Gill (1982). As to the 
almost arbitrary nature of the process Yi, note that we 
may now have patients, for instance, entering observa- 
tion at times t larger than the start time 0 (representing 
time of diagnosis, randomization, or operation) or re- 
turning to the study after a period during which they were 
lost to observation. For further discussion of the impli- 
cations and interpretation of the model, see Self and Pren- 
tice (1982). 

Finally, we rewrite (2.3) in the new notation. Our pro- 
posal is still to estimate Po by treating 

/ dNi(t) 

L(i) = 171 ft Yi(t)exp(,B'Zi(t)) ( 
t20 i= I 

I Yj(t)exp(P'Zj(t))/ 
j= 1 

as an ordinary likelihood function for Po and derive con- 
fidence intervals, significance tests, and so on, using stan- 
dard large-sample likelihood theory. In formula (3.4), 
dNi(t) is the increment of Ni over a small interval dt 
around the time t and the product over t is a product over 
disjoint intervals. So (3.4) reduces to a finite product over 
all i and t for which Ni jumps at time t (dNi(t) = 1); 
elsewhere dNi(t) = 0. Let 3 be the value of 3 maximizing 
L(f3), and also define L(,, u) as the likelihood function 
based on the observations on the time interval [0, u], in 
which the product over t 2 0 in (3.4) is replaced by a 
product over t - 0, t < u. 

4. SOME MARTINGALE THEORY 

A martingale M = {M(t): t - 0} is a stochastic process 
whose increment over an interval (u, v], given the past 
up to and including time u, has expectation zero. In sym- 
bols, we have 

W [M(v) - M(u) I uI = 0 (4.1) 

for all 0 ? u < v < oc. Given ;,, M(u) is fixed. A great 
deal is known about martingales. There are, for instance, 
martingale transform theorems, which state that inte- 
grating a predictable process with respect to a martingale 
yields a new martingale, and there are martingale central 
limit theorems, which give conditions under which the 
whole process M is approximately normally distributed, 
with independent increments (so the process looks like a 
time-transformed Brownian motion). 

We will shortly sketch the ideas behind these two top- 
ics. First, though, we rewrite the defining property (4.1) 
by taking the time instants u and v to be just before and 
just after the time instant t, giving 

W[dM(t) I i,_] = 0. (4.2) 

Let us relate this to the defining property (3.1) of the 
intensity of a counting process. Note that in a small time 
interval dt, Ni either jumps once or does not jump at all. 
So the probability of a jump in that interval is close to 
the expected number of jumps in the interval. Thus (3.1) 
states Ai(t)dt = t[dNi(r) | i,] or, defining dMi(t) = 

dNi(t) - Ai(t)dt, 'g[dM (t) | i9 = 0. So (3.1) is equiv- 
alent to the assertion that Mi, defined by 

M'(t) = Ni(t) - Ai(s)ds, (4.3) 

is a martingale. 
We need one more concept, that of the predictable var- 

iation process of a martingale M. That is a process (M) 
= {(M)(t): t 2 0} defined by 

d(M)(t) = YS[dM(t))2 it_] = var[dM(t) I i,,]. 
It is predictable and nondecreasing and can be thought 
of as the sum of-conditional variances of the increments 
of M over small time intervals partitioning [0, t], each 
conditional variance being taken given what has hap- 
pened up to the beginning of the corresponding interval. 
One can similarly define the predictable covariation proc- 
ess of two martingales, M and A' say, denoted by (M, 
M,). 

We illustrate this concept with the counting process 
martingales Mi, i = 1, . . . , n, of (4.3). Given the past 
up to the beginning of an interval dt, dNi(t) is a zero- 
one variable. Its conditional expectation is Ai(t)dt, and 
hence its conditional variance is Ai(t)dt (1 - Ai(Mdt) = 
Ai(t)dt. Thus we expect (and this turns out to be true) 
that 

(Mi)(t)= f Ai(s)ds. 

As to the predictable covariance between Mi and Mj, i 
# j, recall that we supposed that Ni and Nj never jump 
simultaneously. Thus dNi(t)dNj(t) is always zero, and 
hence the conditional covariance between dNi(t) and 
dN1(t) is - Ai(t)dt.Aj(t)dt 0. Indeed, it is the case that 

(Mi, Mj)(t) = O, for all -t and i 7& j. 

We now can discuss the results mentioned at the be- 
ginning of Section 5. Suppose M is a martingale and H 
is a predictable process. Define a process M' = {M'(t): t 
-0} by 

M' (t) = fH(s)dM(s) 

or, equivalently, dM'(t) = H(t)dM(t). Then M' is also 
a martingale, since 

cg[ dM'(t) | 9; t- I 

= N[H(t)dM(t) | It 

= H(t)W[dM(t) | i_] (because H is predictable) 

= 0 (because M is a martingale). 

Furthermore, (M')(t) = f H(s)2d(M)(s); this follows be- 
cause 

var[dM'(t) I 2V_] = var[H(t)dM(t) I I 

= H(t)2var[dM(t) Ii, 

=H(t)2d(M)(t). 
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A similar result holds for the predictable covariation pro- 
cess of the integrals of two predictable processes with 
respect to two martingales. 

Second, we must mention martingale central limit theo- 
rems. A time-transformed Brownian motion W = { W(t): t 
- 0} is a process with the following properties. The re- 
alizations W(') are continuous functions, zero at time 
zero. For any t1, . . . , tn, W(tl), . . ., W(t,) is multi- 
variate normally distributed with zero means and inde- 
pendent increments; thus for s < t, W(t) - W(s) is in- 
dependent of W(s) (and in fact of W(u) for all u < s). 

By independence of increments, the conditional vari- 
ance of dW(t) given the path of W on [0, t) does not 
depend on the past. Also the conditional expectation is 
zero. Thus W is a continuous martingale with predictable 
variation process (W) equal to some deterministic func- 
tion A, say. 

In fact, these properties characterize the distribution 
of W (Gaussian). So it is not surprising that if a sequence 
of martingales M(n), n = 1, 2, . .. , is such that (a) the 
jumps of M(n) get smaller as n - (M(n) becomes more 
nearly continuous) and (b) the predictable variation proc- 
ess of M(n) becomes deterministic, that is, (Mtn()(t) __ 

A(t) in probability as n -- oc, where A is a fixed function, 
then M(n) converges in distribution to W as n oo; in 
particular, M(n)(t) is asymptotically normally distributed 
with mean zero and variance A(t) and the increments of 
M(n) are asymptotically independent. 

A complete account of martingale and stochastic in- 
tegral theory can be found in Meyer (1976). The links to 
counting processes are made in Bremaud and Jacod 
(1977). The central limit theorem we have sketched above 
can be found in Rebolledo (1980); still more sophisticated 
theorems can be found in Liptser and Shiryayev (1980). 
See also Shiryayev's survey (1981). For surveys aimed 
at applications in statistics see Aalen (1976,1978) or Gill 
(1980). 

5. LARGE-SAMPLE PROPERTIES OF 13 

It should be recalled that classically, asymptotic nor- 
mality of a consistent maximum likelihood estimator can 
be derived via a Taylor expansion of the first derivative 
of the log likelihood about the true value 13 = 1o, eval- 
uated at 13 = P. When writing D log L(,B) for the vector 
of partial derivatives (d/ali) log L(,B) evaluated at 1, the 
key step is to show that n - 1"2D log L(13o) is asymptoti- 
cally multivariate normally distributed, with mean zero 
and covariance matrix equal to the average Fisher infor- 
mation. In a classical setup with iid observations from a 
density f(-; 1o), this result follows from the central limit 
theorem, since n - "2D log L(1o) turns out to be n - 1/2 

times the sum of n random vectors, iid, with means zero 
and covariance matrices equal to the Fisher information 
matrix. 

We will show that the same approach works here if we 
simply use a martingale central limit theorem instead of 
a classical central limit theorem. This means considering 

D log L(jo) as a sum (or integral) over time instants t 
rather than over individuals i. (We shall briefly discuss 
the problem of proving consistency of 3 later.) Recall that 
L(Pr, u) is the likelihood for 3 based on observation of 
Ni, Yi, and Zi, i = 1, . . ., n, on the time interval [0, u], 
and define 

1n 

- I Yj(t)Zj(t)exp(13o'Zj(t)) 

Eo(t) = n 
- , Yj(t)exp(Po'Zj(t)) 
nj=1 

Then we have, from (3.4), 

n-"'2D log L(, u) 
n 

n / E Yj(t)Zj(t)exp(o' Zj(t)) 
=n 

- 1/2 
E 

Z 
i(t) - 

j= 
n dNi(t) 

i=t1Pu Yj(t)exp(fo'Zj(t)) 
j= 1 

n Ul 
= E A - O "2(Zi(t) - Eo(t))dNi(t) 

n u 

= , | n"-12(Z1(t) - Eo(t))dMi(t), (5.1) 

since dMP(t) = dNi(t) - Ai(t)dt, and 

n 

(Zi(t) - Eo(t))Ai(t) 

n 

= E Zi(t)Yi(t)Xo(t)exp(jo'Zi(t)) - Eo(t) 
i = 1 

n 

x EYi(t)Xo(t)exp(Po'Zi(0)) 
i== 1 

= 0. 

Now n - "/2(Z,(t) - Eo(t)) is a vector of predictable pro- 
cesses (it only depends on the fixed parameter Po and the 
predictable processes Yj, Zj, j = 1, . . . , n), so we see 
by the martingale transform theorem of Section 4 that 
n - /2D log L(o30, t), considered as a stochastic process 
in t, is the sum of n (vector) martingales, hence also a 
martingale. It now remains to verify the conditions (1) 
and (2) of the martingale central limit theorem of Section 
4 to show that M(n)(t) = n"- 1/2D log L(Po, t) is asymp- 
totically normally distributed. 

In fact, we need a vector version of that theorem (which 
does exist) unless the vectors 1B and Zi(t) are scalars. But 
for simplicity, let us from now on suppose that this is the 
case. We did not state very precisely what we meant by 
the jumps of M(n) getting smaller as n -- o. Let us con- 
sider then, a special case in which it is clear that there 
will be no difficulties that in which Z(t) i I C < x for 
all i and t for some constant C. (This condition is not 
necessary for our final result.) In that case it is easily 
seen that the integrand Z1(t) - Eo(t) in (5.1) is also 
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bounded by C. Each Mi only has jumps of size + 1, co- 
inciding with the jumps of Ni. Since there are no multiple 
jumps, the jumps of M( are bounded by n - "2C, which 
tends to zero as n -* oo. This deals with condition (1). 

As for condition (2), we must evaluate the process 
(M(n). It is easy, using the results of Section 4 and some 
simple algebra, to show that 

(M(n))(t) 

= j- ! >2 (Zi(s) = Eo(s))2Ai(s)ds 

t nl 

= J? n E Z1(s)2Yi(s)exp(f3o'Zi(s)) 

Zi(s) Yi(s)exp(13o'Zi(s))) 

I ) Xo(s)ds. 

-E Yi(s)exp(po'Zi(s)) n i=1 

Thus (M(n))(t) can be expressed in terms of simple av- 
erages of Yi(s)Zi(s)r exp(Po'Zi(s)), r = 0, 1, and 2. We 
would expect to be able to show that (M(n))(t) converges 
in probability to some constant if these averages converge 
in probability. This turns out to be the case; moreover, 
all of the other parts of the classical proof of asymptotic 

A 

normality of 1 also go through under the same conditions 
(sometimes with Po replaced by 13 close to 13o). In par- 
ticular this applies to proving consistency of ,B, which 
needs to be established before the above arguments can 
be applied. Martingale theory and concavity of the log 
likelihood function together yield a simple proof of this; 
see Andersen and Gill (1982). In conclusion, it turns out 
that large-sample maximum likelihood theory is valid for 
, if.n is large enough that the averages 

in 
- E Y1(t)Zi(t)rexp(1'Zi(t)), r = 0, 1, and 2, 
n i=1 

are almost nonrandom for all t and for 13 close to Po. 
The martingale property of M(n) is implied in Cox's 

(1975) definition of partial likelihood (see p. 274). There 
it is shown that each term in D log L(13o) has expectation 
zero given the preceding terms. So it does appear, more 
generally, that the definition of partial likelihood contains 
enough structure to ensure that the large-sample prop- 
erties of maximum likelihood estimation hold for it, too 
(under similar regularity conditions). For instance, Pren- 
tice and Self (1983) show that similar results hold when 
the effect of covariates on survival is modeled by replacing 
exp(po'Zi(t)) by any other function of of'Zi(t) in the haz- 
ard rate for the ith individual (see also Thomas 1982). 

6. CONCLUDING REMARKS 
It was the aim of the previous sections to show that 

the counting process and martingale approach to Cox's 

regression model fits both practical and theoretical as- 
pects of the model; that is, it gives a framework in which 
one can go about constructing practically realistic 
models, and it supplies the mathematical tools for deriv- 
ing the statistical properties of the model. We claim that 
this is true not only for the Cox model but also for many 
other techniques in survival analysis. In particular we 
refer to the papers of Aalen and Johansen (1978), Aalen 
et al. (1980), Andersen et al. (1982), Andersen (1983), 
Ramlau-Hansen (1983), Sellke and Siegmund (1983), Har- 
rington and Fleming (1982), Gill (1983), and Wei and Gail 
(1983). 

One problem has not been resolved. Large-sample 
properties of m are easy to derive because of the martin- 
gale property of the derivative of the log (partial) likeli- 
hood. Thus the concept of partial likelihood is important 
and useful. However, Johnansen (1983), using counting 
process theory, shows that , can be motivated as a proper 
maximum likelihood estimator, obtained by maximizing 
a full likelihood over f3 and X(*) simultaneously. (Of 
course these terms have to be defined carefully in non- 
and semiparametric situations.) Begun et al. (1983) 
showed that P and the corresponding maximum likeli- 
hood estimator of Xo have the kind of asymptotic effi- 
ciency properties one would expect of maximum likeli- 
hood estimators. These two results have not yet been 
related. 

A similar coincidence arises in connection with the cu- 
rious fact mentioned in Section 2 that not only the log- 
rank test but also all other well known k-sample censored- 
data linear rank tests in survival analysis can be derived 
as score tests (i.e., tests based on D log L(,) 11=o) when 
covariates are specified appropriately in the Cox model. 
This fact can be partially explained as follows. Suppose 
we assume that in k groups, we have censored obser- 
vations from survival distributions with densitiesfJ(t; 0), 
i = 1, . , k. Thus we have k hazard rates X(t; 0j), and 
by a Taylor expansion, we can write log X(t; 0j) log 
A(t; Ok) + (Oi - Ok)g(t; ok) for some function g. Therefore 
we have, close to the null hypothesis O = = Ok = 

00, 

X(t; O) Xo(t)exp((0j - Ok)Z(t)), (6.1) 

where Xo(t) = X(t; 00) and z(t) = g(t; 0O). Such a para- 
metric model is close to the Cox model with a vector of 
k - 1 covariates, such that for an individual in group i, 
the ith component of the covariate at time t equals z(t) 
and the other components are zero. The choice of co- 
variates in the Cox model, which gives as score test the 
log-rank test or any other linear rank test, is precisely of 
this form, except that z(t) is replaced by some predictable 
process Z(t). For large sample sizes, however, Z(t) is 
close to some nonrandom function z(t). Corresponding 
to this function, one can generate parametric families of 
hazard rates via the relation 

(a/aO)logX(t; 0) |o = o = z(t) . 

It turns out (Gill 1980) that each censored-data linear rank 
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test is asymptotically optimal, when testing against ex- 
actly those alternatives implied through (6.1) by its im- 
plicit choice of z. For some linear rank tests (e.g., those 
of Efron 1967 or Gehan 1965), z depends on the censoring 
distributions in the k samples, so the parametric alter- 
natives generated in this way are not very interesting 
ones. However, for others, such as Prentice's (1978) test 
statistics, including the log-rank test, z only depends on 
the underlying (null-hypothesis) survival function. The 
parametric alternatives generated in this way are, in this 
example, precisely the alternatives for which Prentice 
(1978) designed his test statistics to have high power. 

These coincidences of maximum likelihood and effi- 
ciency properties cry out for explanation. One may hope 
that an asymptotic theory of nonparametric maximum 
likelihood estimation will eventually be developed that 
will cast some light on these phenomena. 

[Received October 1982. Revised December 1983.] 
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