
Outline

I Counting processes

I Martingales
I Applications to survival analysis:

I Nelson-Aalen estimate
I Cox partial likelihood (including time-varying covariates)
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Primer: Stieltje’s integral

For real functions f and g and a < b Stieltje’s integral is defined as∫ b

a
f (x)g(dx) =

∫ b

a
f (x)dg(x) = lim

n→∞

n∑
i=1

f (xi )[g(xi )− g(xi−1)]

where a = x0 < x1 < · · · < xn = b.

Sufficient condition for existence: f continuous and g of bounded
variation (i.e. g = g1 − g2 where g1 and g2 monotone functions).

Example: g continuously differentiable∫ b

a
f (x)g(dx) =

∫ b

a
f (x)g ′(x)dx
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Example: g right-continuous piecewise constant with jumps
t1, . . . , tk in [a, b]:∫ b

a
f (x)g(dx) =

k∑
l=1

f (tl)(g(tl)− g(tl−1))

Example: g piecewise continuous differentiable with jumps
t1, . . . , tk in [a, b] (right-continuous in jumps):∫ b

a
f (x)g(dx) =

∫ b

a
f (x)g ′(x)dx +

k∑
l=1

f (tl)(g(tl)− g(tl−))
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Counting process
A continuous time stochastic process N = {N(t)}t≥0 is a counting
process if N(0) = 0, N is piece-wise constant right-continuous, and
with probability one: N(t) ∈ N ∪ {0} with jumps of size 1.

Example: A counting process N is a Poisson process with intensity
function λ if for 0 ≤ s < t, N(t)−N(s) ∼ Poisson(

∫ t
s λ(u)du) and

if increments on disjoint intervals are independent. N(t)− N(s) is
interpreted as the number of “events” in ]s, t].

Equivalent definition: N(t)− N(s) ∼ Poisson(
∫ t
s λ(u)du) and

conditional on N(t)− N(s) = n, the n jump positions in ]s, t] are
independent with density f (u) ∝ λ(u), u ∈]s, t].

Equivalent definition for constant intensity: the waiting times
Wi = Ti − Ti−1 between jump locations Ti , i = 1, 2, . . . are
independent Exponential(λ) random variables (here T0 = 0 is not
a jump location).
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The last two definitions show ways to construct a Poisson process
N (letting N increase by one at each jump position).

A counting process is also known as a point process - focus is then
on the locations of jumps aka the points.

Concept can be generalized to higher dimensions - spatial point
processes.
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Discrete time martingale

Let X1,X2, . . . be independent with Xi ∈ {−1, 1} and
P(Xi = 1) = p (e.g. simple model of changes in stock price).

Define

Sn =
n∑

i=1

Xi

Consider expectation given past:

E[Sn|Sn−1] = E[Xn|Sn−1] + Sn−1 = EXn + Sn−1 = 2p − 1 + Sn−1

Suppose p = 1/2. Then E[Sn|Sn−1] = Sn−1 - best prediction of
tomorrow (n) is value today (n − 1). Sn is a martingale !
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Suppose p > 1/2. Define compensator Λn = n(2p − 1) and
Mn = Sn − Λn.

Then

E[Mn|Mn−1] = E[Xn − [2p − 1]|Mn−1] + Mn−1 = Mn−1

so compensated version of Sn is a martingale.

More generally we say that Mn is a martingale with respect to
history Fn if

I Mn is measurable with respect to Fn

I E[Mm|Fn] = Mn when m ≥ n

Same definition in case of continuous time !
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For the discrete time cases, increments Sm − Sn, Sp − Sq
(q < p < n < m) are obviously independent and hence
uncorrelated.

This in fact holds in general for any martingale: increments are
uncorrelated !
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Continuous time martingale

Let for each t ≥ 0 Ft denote set of ‘information’ available up to
time t (technically, Ft is a σ-algebra) such that Fs ⊆ Ft for
0 ≤ s ≤ t (information increasing over time)

For a stochastic process M, Ft could e.g. represent the history of
the process itself up to time t. Ft could also contain information
about other stochastic processes evolving in parallel to M.

Definition: M = {M(t)}t≥0 is a martingale with respect to
F = {Ft}t≥0 if

I E[M(t)|Fs ] = M(s), 0 ≤ s ≤ t.

I M(t) determined by Ft : knowledge of Ft means we know
M(t) (technically speaking, M(t) is Ft measurable). We say
M is adapted to F .
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Examples

Suppose N is a Poisson process with intensity λ(·). Let
Λ(t) = EN(t) =

∫ t
0 λ(u)du. Then

M(t) = N(t)− Λ(t)

is a martingale with respect to its own past Ft = σ((N(u))0≤u≤t).

A Brownian motion is a martingale with respect to its own past.
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Properties:

I If M(0) = 0 then EM(t) = 0 for all t ≥ 0.

I Uncorrelated increments over disjoint intervals:
E[M(t)−M(s)][M(u)−M(v)] = 0 for 0 ≤ v ≤ u ≤ s ≤ t.

Martingale central limit theorem: a theorem that says that a
sequence of martingales Mn = {Mn(t)}t≥0, n = 1, 2, . . . converges
to a Gaussian process (typically closely related to Brownian
motion).

We shall consider survival analysis examples of such sequences.

Definition: a process X is predictable with respect to F if X (t) is
determined by Ft−, i.e. information up to but not including t. In
other words, X (t) is known given Ft−dt .

Example: a left-continuous process is predictable given its own
past: X (t) = limh→0 X (t − h).
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Infinitesimal characterization of martingale
Let dM(t) = M(dt) = M((t + dt)−)−M(t−) be increment over
infinitesimal interval [t, t + dt[ from t to t + dt.

Then M is a martingale if

E[dM(t)|Ft−] = 0

Heuristically, for s < t:

E[M(t)|Fs ] = M(s) + E

[∫
]s,t]

dM(u)|Fs

]

= M(s) +

∫ t

s
E[dM(u)|Fs ]

= M(s) +

∫ t

s
E
[
E[dM(u)|Fu−]|Fs ] = M(s)

(here we used Fs ⊆ Fu−, s < u, for the third equality)
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Why not define dM(t) = M(t + dt)−M(t) ?

Usually our M is right continuous where left limits exist.

Then, with current definition of dM(t), dM(t) is non-zero if M
has a jump at t.

For example, for a counting process N, dN(t) is equal to one if N
jumps at t and zero otherwise.

In contrast, N(t + dt)− N(t) is always zero for infinitesimal dt.
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Application in survival analysis

Procedure:

1. express data as counting process N

2. construct martingale M(t) = N(t)− Λ(t), t ≥ 0.

3. Express Nelson-Aalen/Kaplan-Meier/Cox partial likelihood as
a stochastic integral

M̃(t) =

∫ t

0
K (u)dM(u)

for some predictable process K . Note M̃(u) is also a
martingale (exercise).

4. Apply martingale central limit theorem to 1√
n
M̃n(t)

(introducing n, number of subjects, in the notation) to get
asymptotic normality.
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Independent and identically distributed survival times
Given survival data (Ti ,∆i ), i = 1, . . . , n define zero or one-step
counting processes

Ni (t) = 1[Ti ≤ t,∆i = 1] = 1[Xi ≤ t,Xi ≤ Ci ]

and accumulated process,

N(t) =
n∑

i=1

Ni (t).

Note: Xi independent continuous random variables implies N has
jumps of size 1. N(t) is number of deaths that happened before or
at t

Define Yi (t) = 1[Ti ≥ t]. I.e. Yi is one if ith individual at risk at
time t and zero otherwise. Yi is left-continuous and hence
predictable. Y (t) =

∑n
i=1 Yi (t) is the number at risk at time t.

Ft : history of Ni and Yi , i = 1, . . . , n up to time t.
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Compensator

Define

Λi (t) =

∫ t

0
Yi (u)h(u)du

where h is the hazard rate of the Xi .

Then Λi (t) is a continuous and hence predictable stochastic
process.

Moreover, Mi = Ni − Λi is a martingale: we argue next slide that

E[dNi (t)|Ft−] = E[dΛi (t)|Ft−]⇔ E[dMi (t)|Ft−] = 0

Note: regarding E[dNi (t)|Ft−] two cases: Ti < t (death or
censoring already occurred) or Ti ≥ t (still at risk)
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Case Ti ≥ t:

E[dNi (t)|Ft−] = E [1[Ti ∈ [t, t + dt[,Ci ≥ Xi ]|Ti ≥ t]

‘ =′ P[Xi ∈ [t, t + dt[,Ci ≥ t|Xi ≥ t,Ci ≥ t]

= P[Xi ∈ [t, t + dt[|Xi ≥ t,Ci ≥ t]

Under independent censoring, the last probability is
h(t)dt = Yi (t)h(t)dt (‘=’ is because we replace Ci ≥ Xi by
Ci ≥ t).

Case Ti < t:

E[dNi (t)|Ft−] = E[dNi (t)|Ti < t] = 0 = Yi (t)h(t)dt

(the only possible jump occurred prior to t).

Regarding dΛi (t):

E[dΛi (t)|Ft−] = E[Yi (t)h(t)dt|Ft−] = Yi (t)h(t)dt

(where we used Yi (t)h(t)dt predictable process, hence given Ft−
we know Yi (t)).
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Conclusion:

E[dNi (t)|Ft−] = E[dΛi (t)|Ft−]⇔ E[dMi (t)|Ft−] = 0

It follows that
M(t) = N(t)− Λ(t)

is a martingale too where

Λ(t) =
n∑

i=1

Λi (t) = Y (t)h(t)

M(0) = N(0)− Λ(0) = 0 so EM(t) = 0 for all t ≥ 0.
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Nelson-Aalen estimator
Define 0/0 = 0. Then

dN(u) = dΛ(u)+dM(u)⇔ dN(u)

Y (u)
= 1[Y (u) > 0]h(u)du+

dM(u)

Y (u)

Integrating we obtain∫ t

0

dN(u)

Y (u)
=

∫ t

0
1[Y (u) > 0]h(u)du +

∫ t

0

dM(u)

Y (u)

Here:

I H∗(t) =
∫ t
0 1[Y (u) > 0]h(u)du is equal to H(t) for

t ≤ max{T1, . . . ,Tn}.
I W (t) =

∫ t
0

dM(u)
Y (u) du is a zero-mean martingale ‘noise’ process

I Ĥ(t) =
∫ t
0

dN(u)
Y (u) is an unbiased estimator of H∗(t)
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Observe:

Ĥ(t) =
∑

t∗∈D:t∗≤t

1

Y (t∗)

is precisely the Nelson-Aalen estimator.

Martingale central limit theorem for 1√
n
W can be used to show

asymptotic normality of Ĥ.
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Score process for Cox regression
We still assume that the counting processes Ni are independent
but now with different hazard rates

hi (t) = h0(t) exp[βTZi (t)]

Note: we immediately seize the opportunity to generalize the Cox
regression model by allowing covariates Zi (t) = (Zi1(t), . . . ,Zip(t))
to be a time-varying predictable random process.

Compensators

Λi (t) =

∫ t

0
λi (u)du λi (u) = Yi (u)hi (u) Λ(t) =

n∑
i=1

Λi (t)

Partial log likelihood process:

l(β, t) =
∑

i∈D:ti≤t

(
βTZi (ti )− log

[
n∑

l=1

Yl(ti ) exp(βTZl(ti ))

])
Note: partial log likelihood l(β) = l(β,∞). We here used risk
process Yl(ti ) notation instead of risk set R(ti ).
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Score process

u(β, t) =
∑

i∈D:ti≤t

(
Zi (ti )−

∑n
l=1 Yl(ti )Zl(ti ) exp(βTZl(ti ))∑n

l=1 Yl(ti ) exp(βTZl(ti ))

)
=

∑
i∈D:ti≤t

(Zi (ti )− E (ti ))

where {E (t)}t≥0 predictable process.

KM uses notation (Z̄1(t), . . . , Z̄p(t))T) for E (t).

We can rewrite score-process to conclude that it is a martingale:

u(β, t) =
n∑

i=1

∫ t

0
(Zi (u)−E (u))dNi (u) =

n∑
i=1

∫ t

0
(Zi (u)−E (u))dMi (u)

(stochastic integral of predictable process with respect to a
martingale is itself a martingale)
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Last equality because

n∑
i=1

∫ t

0
(Zi (u)− E (u))dΛi (u) =

∫ t

0

n∑
i=1

(Zi (u)− E (u))dΛi (u)

=

∫ t

0

[ n∑
i=1

Zi (u)Yi (u) exp(βTZi (u))

−E (u)
n∑

i=1

Yi (u) exp(βTZi (u))
]
h0(u)du =

∫ t

0
0du = 0

We can again apply martingale central limit theorem to 1√
n
u(β, t) !
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Residuals
Score process residuals: simply the p components of score process
with β replaced by β̂ and dMi (u) replaced by

dM̂i (u) = dNi (u)− Yi (u) exp(β̂TZi (u))dĤ0(u) = dNi (u)− dΛ̂i (u)

where

dĤ0(u) = Ĥ0(u)−Ĥ0(u−) =

{
1∑n

l=1 Yl (u) exp(β̂TZl (u))
u death time

0 otherwise

Martingale residuals:

rmart,i(t) = Ni (t)− Λ̂i (t)

Typically evaluated at t =∞

rmart,i(∞) = δi − Λ̂i (∞)
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Martingale residuals sum to zero

n∑
i=1

Ni (∞)− Λ̂i (∞) =
n∑

i=1

δi −
n∑

i=1

∫ ∞
0

Yi (u) exp(β̂TZi (u))dĤ0(u).

Last term is

n∑
i=1

∑
k∈D

Yi (tk)) exp(β̂TZi (tk))∑n
l=1 Yl(tk) exp(β̂TZl(tk))

=
∑
k∈D

∑n
i=1 Yi (tk)) exp(β̂TZi (tk))∑n
l=1 Yl(tk) exp(β̂TZl(tk))

which is equal to
∑n

j=1 δj

25 / 34



Variance of martingale

VarM(t) = Var
∫ t

0
dM(u) =

∫ t

0
VardM(u)

=

∫ t

0
VarE[dM(u)|Fu−] + EVar[dM(u)|Fu−]

=0 + E
∫ t

0
Var[dM(u)|Fu−] = E

∫ t

0
Var[dM(u)|Fu−]

(note: we used uncorrelated increments for second equality)

26 / 34



Application to variance of Nelson-Aalen
In this case M(t) = N(t)− Λ(t) and

Var[dM(t)|Ft−] = Var[dN(t)|Ft−] = λ(t)dt(1−λ(t)dt) ≈ λ(t)dt

where λ(t)dt = dΛ(t) = Y (t)h(t)dt.

Nelson-Aalen estimator has ”noise term”∫ t

0

1

Y (u)
dM(u)

which by exercise 2.1 is a martingale.

Hence variance is

VarĤ(t) = E
∫ t

0
Var[

1

Y (u)
dM(u)|Fu−]

=E
∫ t

0

1

Y (u)2
Var[dM(u)|Fu−] = E

∫ t

0

1[Y (u) > 0]

Y (u)
h(u)du.
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We estimate this by∫ t

0

1[Y (u) > 0]

Y (u)
dĤ(u) =

∑
t∗∈D:
t∗≤t

1

Y (t∗)2

which coincides with (4.2.4) in KM (Y (t∗) > 0 for t∗ ∈ D).
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Predictable variation process

Let M denote a F-martingale.

Conditional variance of martingale increment:

Var[dM(t)|Ft−] = E[(dM(t))2|Ft−)− (E[dM(t)|Ft−)])2

=E[M((t + dt)−)2 + M(t−)2 − 2M((t + dt)−)M(t−)|Ft−]− 0

=E[M((t + dt)−)2 −M(t−)2|Ft−] = E[d(M(t)2)|Ft−].

We define the predictable variation process <M> as

d <M> (t) = E[d(M(t)2)|Ft−]

Note: {M(s)2− <M> (s)}s≥0 is yet another martingale.

By previous slide we have
VarM(t) = E

∫ t
0 Var[dM(u)|Fu−] = E

∫ t
0 d <M> (u)
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Variance of score process

(for ease of notation assume Zi one-dimensional, use
d <Mi> (u) = λi (u)du)

We use Exercise 2.2 for the second equality.

Varu(β, t) =
n∑

i=1

Var
∫ t

0
(Zi (u)− E (u))dMi (u)

=E
∫ t

0

n∑
i=1

(Zi (u)− E (u))2λi (u)du

=E
∫ t

0

[ n∑
i=1

Zi (u)2Yi (u) exp(βTZi (u)) + E (u)2
n∑

i=1

Yi (u) exp(βTZi (u))

− 2E (u)
n∑

i=1

Zi (u)Yi (u) exp(βTZi (u))
]
h0(u)du

Continues on next slide
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=E
∫ t

0

[ n∑
i=1

Zi (u)2Yi (u) exp(βTZi (u))

− E (u)2
n∑

i=1

Yi (u) exp(βTZi (u))
]
h0(u)du

=E
∫ t

0

n∑
i=1

(Zi (u)2 − E (u)2)λi (u)du
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- is equal to information
Let

V (u) =

∑n
i=1 Zi (u)2Yi (u) exp(βTZi (u))∑n

i=1 Yi (u) exp(βTZi (u))
− E (u)2

Then

i(β, t) = Ej(β, t) = E
∫ t

0

n∑
i=1

V (u)dNi (u)

= E
∫ t

0

n∑
i=1

V (u)E[dNi (u)|Fu−] = E
∫ t

0

n∑
i=1

V (u)λi (u)du

= E
∫ t

0
V (u)

[ n∑
i=1

Yi (u) exp(βTZi (u))
]
h0(u)du =

E
∫ t

0

( n∑
i=1

Zi (u)2Yi (u) exp(βTZi (u))− E (u)2Yi (u) exp(βTZi (u))
)
h0(u)du

= E
∫ t

0

n∑
i=1

(Zi (u)2 − E (u)2)λi (u)du
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A new paradigm for modeling: view data as generated from a
counting process. Specify model for compensator.

This set-up allows for

I multiple events for each subject

I subjects being on-off risk (e.g. Vemmetofte data)

I time-varying stochastic covariate processes

I we do not need limu→∞Hi (u) =∞ (versus the usual survival
set-up where we require
P(Xi <∞) = 1⇔ Si (∞) = exp(−Hi (∞)) = 0)

I use of powerful martingale theory for establishing asymptotic
results
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Exercises

1. A Brownian motion {B(s)}s≥0 is a continuous-time
zero-mean Gaussian process1 with B(0) = 0 and
Cov(B(s),B(t)) = min(t, s) for s, t ≥ 0.
I Show that a Brownian motion has uncorrelated and hence

independent increments over disjoint intervals
I show that a Brownian motion is a martingale with respect to

its own history:

E[B(t)|B(u), 0 ≤ u ≤ s] = B(s)

2. Show heuristically that if M is a martingale and K is a
predictable process (both with respect to (Ft)t≥0) then

2.1 M̃(t) =
∫ t

0
K (u)dM(u) is a martingale

2.2 M̃ has predictable variation process
<M̃> (t) =

∫ t

0
K (u)2d <M> (u).

3. Show that a martingale has uncorrelated increments (cf.
slide 11).

1I.e. all finite-dimensional distributions are Gaussian
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