Outline

» Counting processes

> Martingales
» Applications to survival analysis:

» Nelson-Aalen estimate
» Cox partial likelihood (including time-varying covariates)
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Primer: Stieltje's integral

For real functions f and g and a < b Stieltje’s integral is defined as

b b
/ F(x)g(dx) = / F(x)dg(x) = lim fo, (£(x) — g(x1)]

where a=xg < x3 < --- < Xx, = b.

Sufficient condition for existence: f continuous and g of bounded
variation (i.e. g = g1 — g2 where g1 and g» monotone functions).

Example: g continuously differentiable

/ ” F(d) = / " F()g (x)dx
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Example: g right-continuous piecewise constant with jumps
t1, ..., b in [a, b]

k

b
/ F(x)a(dx) = 3 F(t)(e(t) - g(tr-1))

=1

Example: g piecewise continuous differentiable with jumps
t1,..., tx in [a, b] (right-continuous in jumps):

b b
/ F(x)g(dx) = / F(x)e dx+2f 6)(g(t) — g(t1-))
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Counting process

A continuous time stochastic process N = {N(t)}+>0 is a counting
process if N(0) =0, N is piece-wise constant right-continuous, and
with probability one: N(t) € NU {0} with jumps of size 1.

Example: A counting process N is a Poisson process with intensity
function X if for 0 < s < t, N(t) — N(s) ~ Poisson(fst A(v)du) and
if increments on disjoint intervals are independent. N(t) — N(s) is
interpreted as the number of “events” in |s, t].

Equivalent definition: N(t) — N(s) ~ Poisson(fst A(v)dwu) and
conditional on N(t) — N(s) = n, the n jump positions in |s, t] are
independent with density f(u) o< A(u), u €]s, t].

Equivalent definition for constant intensity: the waiting times

W; = T; — T;_1 between jump locations T;, i =1,2,... are
independent Exponential(\) random variables (here To = 0 is not
a jump location).
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The last two definitions show ways to construct a Poisson process
N (letting N increase by one at each jump position).

A counting process is also known as a point process - focus is then
on the locations of jumps aka the points.

Concept can be generalized to higher dimensions - spatial point
processes.
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Discrete time martingale

Let Xi, Xo, ... be independent with X; € {—1,1} and
P(X; = 1) = p (e.g. simple model of changes in stock price).

Define .
S, = ZX,-
i=1
Consider expectation given past:
Il“—_1:'[~S.n|5nfl] = IE:[)<n|5n71] + Snfl = Il“—_1:')<n + Snfl = 2P -1+ 5,,71

Suppose p =1/2. Then E[S,|Sp—1] = Sn—1 - best prediction of
tomorrow (n) is value today (n —1). S, is a martingale !
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Suppose p > 1/2. Define compensator A, = n(2p — 1) and
M,=S5,—A,.

Then
IE:[lwn“\/lnfl] — IE[)<n - [2P - 1]|Mn71] + Mnfl = Mnfl
so compensated version of S, is a martingale.

More generally we say that M,, is a martingale with respect to
history F,, if

» M, is measurable with respect to F,
» E[My|Fn] = M, when m > n

Same definition in case of continuous time !
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For the discrete time cases, increments S, — S, Sp — Sq
(g < p < n < m) are obviously independent and hence
uncorrelated.

This in fact holds in general for any martingale: increments are
uncorrelated !

8/34



Continuous time martingale

Let for each t > 0 F; denote set of ‘information’ available up to
time t (technically, F; is a o-algebra) such that Fs C F; for
0 < s <t (information increasing over time)

For a stochastic process M, F; could e.g. represent the history of
the process itself up to time t. F; could also contain information
about other stochastic processes evolving in parallel to M.

Definition: M = {M(t)}:>0 is a martingale with respect to
F ={Fi}e>o if
> E[M(t)|Fs] = M(s), 0 <s <t
» M(t) determined by F;: knowledge of F; means we know
M(t) (technically speaking, M(t) is F; measurable). We say
M is adapted to F.
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Examples

Suppose N is a Poisson process with intensity A(-). Let
A(t) =EN(t) = [; Mu)du. Then

is a martingale with respect to its own past F; = o((N(u))o<u<t)-

A Brownian motion is a martingale with respect to its own past.
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Properties:
» If M(0) =0 then EM(t) =0 for all t > 0.

» Uncorrelated increments over disjoint intervals:
E[M(t) — M(s)][M(u) — M(v)]=0for0<v<u<s<t.

Martingale central limit theorem: a theorem that says that a
sequence of martingales M, = {M,(t)}+>0, n =1,2,... converges
to a Gaussian process (typically closely related to Brownian
motion).

We shall consider survival analysis examples of such sequences.
Definition: a process X is predictable with respect to F if X(t) is
determined by F;_, i.e. information up to but not including t. In

other words, X(t) is known given F;_g;.

Example: a left-continuous process is predictable given its own
past: X(t) = limp_0 X(t — h).
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Infinitesimal characterization of martingale

Let dM(t) = M(dt) = M((t + dt)—) — M(t—) be increment over
infinitesimal interval [t, t + dt[ from t to t 4 dt.

Then M is a martingale if
E[dM(t)|F:-] =0

Heuristically, for s < t:

E[M(t)|Fs] = M(s) +E

/]s,t] dM(u)\fsl

— M(s) + / E[dM(u)|F]
— M(s) + / E[E[AM(u)|F,_ ]| Fo] = M(s)

(here we used Fs C F,_, s < u, for the third equality)
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Why not define dM(t) = M(t + dt) — M(t) ?
Usually our M is right continuous where left limits exist.

Then, with current definition of dM(t), dM(t) is non-zero if M
has a jump at t.

For example, for a counting process N, dN(t) is equal to one if N
jumps at t and zero otherwise.

In contrast, N(t + dt) — N(t) is always zero for infinitesimal dt.
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Application in survival analysis

Procedure:
1. express data as counting process N
2. construct martingale M(t) = N(t) — A(t), t > 0.

3. Express Nelson-Aalen/Kaplan-Meier/Cox partial likelihood as
a stochastic integral

M(t) = /0 K(u)dM(u)

for some predictable process K. Note M(u) is also a
martingale (exercise).
4. Apply martingale central limit theorem to %M,,(t)

(introducing n, number of subjects, in the notation) to get
asymptotic normality.
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Independent and identically distributed survival times

Given survival data (T;,4;), i =1,..., n define zero or one-step
counting processes

Ni(t) =1[T; < t,Ai = 1] = 1[X; < t, X; < (]

and accumulated process,

N(t) = Ni(t).
i=1

Note: X; independent continuous random variables implies N has
jumps of size 1. N(t) is number of deaths that happened before or
at t

Define Yi(t) = 1[T; > t]. l.e. Y; is one if ith individual at risk at
time t and zero otherwise. Y; is left-continuous and hence
predictable. Y(t) =" ; Yi(t) is the number at risk at time t.

Fi: history of N; and Y;, i =1,...,n up to time t.
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Compensator

Define

where h is the hazard rate of the X;.

Then A;(t) is a continuous and hence predictable stochastic
process.

Moreover, M; = N; — A; is a martingale: we argue next slide that

E[AN;(£)|F;_] = E[dA;(£)| Fe_] & E[AM;(t)|F:_] = 0

Note: regarding E[dN;(t)|F¢—] two cases: T; < t (death or
censoring already occurred) or T; > t (still at risk)
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Case T; > t:
E[dN;(t)|Fe-] = E[1[T; € [t, t +dt[, C; > X]]|T; > t]
‘=" PIX €[t t+dt], G > t|X; > t, G > t]
= P[X; € [t,t +dt[|X;i > t, C; > t]
Under independent censoring, the last probability is
h(t)dt = Y;(t)h(t)dt (‘="is because we replace C; > X; by
G > t).
Case T; < t:
E[dN;(t)|Fe=] = E[dN;(t)| T; < t] =0 = Y;(t)h(t)dt

(the only possible jump occurred prior to t).

Regarding dA;(t):
E[dAi(t)|Fe=] = E[Yi(t)h(t)dt|Fe—] = Yi(t)h(t)dt

(where we used Y;(t)h(t)dt predictable process, hence given F;_
we know Yij(t)).
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Conclusion:

E[dN;(t)|Fe_] = E[dA(t)|Fr_] < E[dM;(t)|Fe_] = 0

It follows that

is a martingale too where

A(t) = ST Ai(e) = Y(£)h(1)
i=1

M(0) = N(0) — A(0) = 0 so EM(t) = 0 for all t > 0.
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Nelson-Aalen estimator
Define 0/0 = 0. Then

dN(u) = dA(u)+dM(u) &

B ., Ndu dM(u)
Y(a) = 1[Y(u) > 0]h(v)du+ 70

Integrating we obtain

YdN(u)  [F J Ndu tdM(u)
/0 v _/0 1Y (u) > 0]h(u)d +/0 Yo

Here:
> H*(t) = [; 1[Y(u) > 0]h(u)du is equal to H(t) for
t<max{T1,..., Tht}.

> W(t) = Ot d%%)du is a zero-mean martingale ‘noise’ process

> At) = Ot d\’,v((u”)) is an unbiased estimator of H*(t)
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Observe:

N 1
M= 2 i

t*eD:t*<t

is precisely the Nelson-Aalen estimator.

Martingale central limit theorem for ﬁW can be used to show

asymptotic normality of A.
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Score process for Cox regression

We still assume that the counting processes N; are independent
but now with different hazard rates

hi(t) = ho(t) exp[ 5 Zi(t)]
Note: we immediately seize the opportunity to generalize the Cox
regression model by allowing covariates Z;(t) = (Zj1(t),..., Zip(t))
to be a time-varying predictable random process.

Compensators

/\,-(t):/o N(u)du Ai(u) = Yi(u)hi(u) AE) =Y Ai(t)
i=1

)

Partial log likelihood process:

B,)="> <5TZi(ti)—|0g

ieD:t;<t

> Yilt) exp(87 Zi(1:))

I=1

Note: partial log likelihood /(3) = (3, 00). We here used risk

process Y/(t;) notation instead of risk set R(t;).
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Score process

_ oy iy Yi(t) Zi(t) exp(BT Zi(t))
uB= 3 <Z’(t’) ST Vi) exp(5T Zi(8) >

= Y (&) - E(w)

ieD:t;<t

ieD:t;<t

where {E(t)}+>0 predictable process.
KM uses notation (Z1(t), ..., Z(t))") for E(t).

We can rewrite score-process to conclude that it is a martingale:

Z/ u))dN;(u) = Z/ u))dM;(u)

(stochastic integral of predictable process with respect to a
martingale is itself a martingale)
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Last equality because

Xn:/t(z,-(u) — E(u))dAi(u) = /otZ:(Z"(”) — E(u))dAi(u)
/ [ZZ ) exp(57Zi(w)

Z Yi(u) exp(B ))} ho(u)du = /ot O0du=0

We can again apply martingale central limit theorem to —= (,8, t) !
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Residuals
Score process residuals: simply the p components of score process
with 3 replaced by 5 and dM;(u) replaced by
AM;(u) = dN;(u) — Yi(u) exp(BT Zi(u))dHo(u) = dN;(u) — dA;(u)

where

1

N N N - = u death time
dHo(u) = Ho(u)—Ho(u—) = {211 Yi(u)exp(B1Z)(u))

0 otherwise
Martingale residuals:
Fmarti(£) = Ni(£) = Ai(t)
Typically evaluated at t = co

rmart,i(oo) = 5i - /A\I(OO)
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Martingale residuals sum to zero

Z/v (00) — A( 25 —Z/ u) exp(BT Zi(u))dHo(u).

Last term is

Z > tk exp(BTZi(t))  _ x— Tier Yi(te)) exp(BT Zi(t))
i=1 keD Zl 1 tk exp(BTZ,(tk)) keD 27:1 Y/(tk) eXp(BTZ/(tk))

which is equal to > 7 9;
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Variance of martingale

Varl\/l(t):Var/O d/\/l(u):/0 VardM(u)
- / VarE[dM(u)| Fu_] + EVar[dM(u)|F,_]
0
—0+E /0 Var[dM(u)|Fy_] = E /0 Var[dM(u)|Fs_]

(note: we used uncorrelated increments for second equality)
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Application to variance of Nelson-Aalen
In this case M(t) = N(t) — A(t) and

Var[dM(t)|Fe=] = Var[dN(t)|Fe=] = A(t)dt(1-\(t)dt) ~ A(t)dt
where \(t)dt = dA(t) = Y(t)h(t)dt.
Nelson-Aalen estimator has " noise term”

t 1
/0 M)

which by exercise 2.1 is a martingale.

Hence variance is

VarA(t / Var[ M(u)|Fu-]

_ 1 ar _g [(UY()>0
_E/o Vo VM) Pl = E/O Vo) (e
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We estimate this by

/ 1[Y(u) > 0]
0

Y (u) t*eD Y

which coincides with (4.2.4) in KM (Y(t*) > 0 for t* € D).
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Predictable variation process
Let M denote a F-martingale.

Conditional variance of martingale increment:

Var[dM(t)| Fe-] = E[(dM(t))?| Fe-) — (E[AM(t)|Fe-)])?
=E[M((t + dt)—)? + M(t—)? — 2M((t + dt)—)M(t=)|F:_] — 0
=E[M((t + dt)—)? — M(t—)?|F;-] = E[A(M(£)?)| F¢-].

We define the predictable variation process <M > as
d <M> () = B[d(M(t)?)| Fe_]
Note: {M(s)>—~ <M > (s)}s>0 is yet another martingale.

By previous slide we have
VarM(t) = E [; Var[dM(u)|F,-] =E [y d <M > (u)
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Variance of score process

(for ease of notation assume Z; one-dimensional, use
d <M;> (u) = Xi(u)du)

We use Exercise 2.2 for the second equality.
Varu(g, t) ZVar/ Zi(u) — E(u))dM;(u)

= i\u) — U2'UU
—E/O ;(z,u E()Mi(u)d

n

:E/ot [Z Zi(u)*Yi(u) exp(BT Zi(u)) + E(u)* Y Yi(u) exp(87 Zi(u))

i=1

—2E(u ZZ u)Yi(u exp(ﬁTZ,-(u))} ho(u)du

Continues on next slide
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== [ [ L2 v ow(s"2()
— E(u)®) Yi(u) exp(BT Zi(u)) | ho(u)du
i=1

:E/O ’Z;(Z;(u)2 — E(u))Ai(u)du
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- is equal to information

Let
>t Zi(u)?Yi(u) exp(BT Z;(u))
> Yi(u) exp(BT Zi(u))

V(u) = — E(u)?

Then

i(B,t) =Ej(B3,t) / Z V(u)dN;(
= IE/ Z V(u)E[dN;(u)|F,_] = u-z/o ; V(u)Ai(u)du

_E/ U)Zy ) exp(87 Zi(u))] ho(u)du =

n

E /0 (D= Ziu)?vi(w) exp(87 Zi(w)) — E(u)?Yi(u) exp(8T Zi(u)) ) ho(u)du

i=1

_E / SO(Zi(u)? — E(u))Ai(u)du

0 =1
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A new paradigm for modeling: view data as generated from a
counting process. Specify model for compensator.

This set-up allows for

>

>
>
>

multiple events for each subject
subjects being on-off risk (e.g. Vemmetofte data)
time-varying stochastic covariate processes

we do not need lim,_,o Hij(u) = oo (versus the usual survival
set-up where we require

P(X; < 00) =1 < Si(00) = exp(—Hi(o0)) = 0)

use of powerful martingale theory for establishing asymptotic
results
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Exercises

1. A Brownian motion {B(s)}s>0 is a continuous-time

zero-mean Gaussian process! with B(0) = 0 and
Cov(B(s), B(t)) = min(t,s) for s,t > 0.

» Show that a Brownian motion has uncorrelated and hence

independent increments over disjoint intervals

» show that a Brownian motion is a martingale with respect to

its own history:
E[B(t)|B(u),0 < u < s] = B(s)
2. Show heuristically that if M is a martingale and K is a

predictable process (both with respect to (F¢)t>0) then

2.1 M(t fo (u) is a martingale

22 M has predlctable variation process
<M> (t) =[5 K(u)2d <M> (u).

3. Show that a martmgale has uncorrelated increments (cf.

slide 11).

!1.e. all finite-dimensional distributions are Gaussian
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