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Estimation of the survival function - actuarial estimate

Suppose we are given data in terms of a lifetable for a population.

That is, for fixed times 0 = u0 < u1 < u2 < · · · we know for each
ui
▶ the number r(ui ) of individuals at risk (not dead or censored)

at time ui (i.e. both survival time and censoring time ≥ ui )

▶ the number of deaths di in the interval [ui−1; ui [ and

▶ the number ci of censorings in [ui−1; ui [.

Note: r(ui ) = r(ui−1)− di − ci and initial population size
n = r(u0)
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We want to estimate P(X ≥ ui )

Usual estimate:

P̂(X ≥ ui ) =
#alive up to time ui

n

If no censoring:

P̂(X ≥ ui ) =
r(ui )

n

Problem: due to censoring we often do not know numerator -
typically larger than r(ui ) ! (individuals censored prior to ui may
well be alive)
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Factorization

P(X ≥ ul) =
l∏

k=1

P(X ≥ uk |X ≥ uk−1) =

l∏
k=1

(1− P(X < uk |X ≥ uk−1)) =
l∏

k=1

(1− pk)

Here pk is the probability of dying in the kth interval given alive at
start of interval.

Suppose we obtain estimate p̂k . Then resulting estimate of
P(X ≥ ul) is

P̂(X ≥ ul) =
l∏

k=1

(1− p̂k)
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Estimation of pk

Immediate idea:

p̂k =
dk

r(uk−1)

Requirement: individuals contributing to the denominator must be
representative of those alive at time uk−1. Thus the probability
that a person dies in [uk−1; uk [ given that the person is at risk (not
dead or censored) at time uk−1 must coincide with pk .

This is what we called independent censoring (or non-informative
censoring in KM, unfortunately terminology is not consistent over
text books)

OK if each ck represents a random sample of the r(uk−1) persons
at risk. Problematic if persons are censored because they appear
very weak at time uk−1.
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In case of censoring we still have problem: if ck > 0, numerator in

p̂k =
dk

r(uk−1)

may be too small. Adding ck to dk would not work - since not
likely that all censored persons died in [uk−1, uk [. Instead we
adjust the denominator.

Suppose all censoring takes place in the very beginning of the kth
interval at time uk−1. Then the effective number at risk in the kth
interval is r(uk−1)− ck and we let

p̂k =
dk

r(uk−1)− ck
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If all censoring takes place at the very end of the interval then

p̂k =
dk

r(uk−1)

If the censoring times are uniformly dispersed on the interval then
a censored individual is at risk on average half of the interval and
we use

p̂k =
dk

r(uk−1)− ck/2

I.e. the so-called actuarial estimate - uses denominator given by
average of previous denominators.

Note: p̂k = 0 if no deaths in the kth interval !
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Estimation using exact death times - reduced sample
estimator

Suppose now we have observed the exact death or censoring times
(ti , δi ) and we want to estimate P(X > t) for an arbitrary t.

Suppose the censoring times Ci are all observed and independent
of the death times Xi (e.g. type 1 censoring).

Unbiased reduced sample estimator:

Ŝred(t) =

∑n
i=1 1[xi > t, ci > t]∑n

i=1 1[ci > t]

Problem: inefficient use of observations. An observation censored
at time u does not contribute to Ŝred(t) for t ≥ u.

Not applicable in case of competing risks when Ci > t not
observed if death happens prior to t.
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Alternative idea: introduce discretization
0 = u1 < u2 < · · · < uL = t and apply actuarial estimate.

Next consider limit L → ∞ and uk − uk−1 → 0 (finer and finer
discretization). Assume also that no censoring time coincides with
a death time.

Let D denote the set of distinct death times and let d(t∗) denote
the number of deaths at time t∗ for t∗ ∈ D.

Then, for L sufficiently large, there is a most one distinct death
time in each interval and if there is a death time then there is no
censoring.
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Thus we have two possibilities p̂k = 0 (no death) or

p̂k =
d(t∗)

r(t∗)

if t∗ is the unique death time falling in [uk−1; uk [.

Thus our estimate becomes

P̂(X ≥ t) =
∏

t∗∈D:
t∗<t

(1− d(t∗)

r(t∗)
)

and

Ŝ(t) = P̂(X > t) =
∏

t∗∈D:
t∗≤t

(1− d(t∗)

r(t∗)
)

This is the Kaplan-Meier (product limit) estimate.

Estimate is right-continuous.

If last event, say tn, is a death then Ŝ(t) = 0 for t ≥ tn. If last
event is a censoring then Ŝ(t) = Ŝ(tn) > 0 for t ≥ tn. 10 / 23



Nelson-Aalen estimator of cumulative hazard

H(t) =

∫ t

0
h(u)du ≈

L∑
k=1

h(uk−1)[uk − uk−1] ≈
L∑

k=1

pk

Thus

Ĥ(t) =
L∑

k=1

p̂k

In the limit (Nelson-Aalen estimator)

Ĥ(t) =
∑
t∗∈D:
t∗≤t

d(t∗)

r(t∗)

Recall S(t) = exp(−H(t)). Estimates Ĥ(t) and Ŝ(t) related by
log(1− x) ≈ −x or exp(−x) ≈ 1− x for x close to 0.

11 / 23



Asymptotic results

Consider the random censoring case where the n survival and
censoring times Xi and Ci , i = 1, . . . , n have survival functions S
and G .

Consider any 0 < v < ∞ with S(v) > 0, assume that 1− S is
absolute continuous with density f and that G is continuous. Then
the random function

√
n(Ŝ(t)− S(t)), 0 < t < v

converges in distribution to a zero mean Gaussian process
{R(u)}0<u<v with covariance function

Cov(R(t1),R(t2)) = S(t1)S(t2)

∫ min(t1,t2)

0

h(u)

S(u)G (u)
du

(see e.g. Lawless, 1982).
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Implications of asymptotic result

For any 0 < t < v :

Ŝ(t) ≈ N(S(t),
σ2
t

n
) with σ2

t = S(t)2
∫ t

0

h(u)

S(u)G (u)
du

√
n-consistency: for any fixed c ,

P(
√
n|Ŝ(t)− S(t)|/σt < c)

converges to 1− 2Φ(−c).

Loosely speaking,
√
n(Ŝ(t)− S(t))/σt is bounded with probability

1, thus (Ŝ(t)− S(t)) converges to zero as 1/
√
n.

95% Confidence interval (pointwise !):

Ŝ(t)± 1.96σt/
√
n
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Estimation of asymptotic variance
In practice we need to estimate asymptotic variance σ2

t :

σ2
t ≈ S(t)2

L∑
k=1

h(uk−1)

S(uk−1)G (uk−1)
(uk−uk−1) ≈ S(t)2

L∑
k=1

p̂k
n

r(uk−1)

Taking the limit L → ∞ as before we obtain

σ̂2
t

n
= Ŝ(t)2

∑
t∗∈D:
t∗≤t

d(t∗)

r(t∗)

1

r(t∗)

Typically, the closely related Greenwoods formula is used:

σ̂2
t

n
= Ŝ(t)2

∑
t∗∈D:
t∗≤t

d(t∗)

r(t∗)

1

r(t∗)− d(t∗)

(recall: for L sufficiently large p̂k is either 0 or d(t∗)/r(t∗) and in
the latter case, r(uk) = r(t∗)− d(t∗))
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Note: Greenwood’s formula can be derived by heuristic arguments
using

Ŝ(t) =
L∏

k=1

(1− p̂k) = g(p̂1, . . . , p̂L)

where g(x1, . . . , xL) =
∏L

i=1(1− xi ) and the δ-method.

We also assume p̂k uncorrelated and estimate Varp̂k by

p̂k(1− p̂k)/r(uk−1)

- see next slide.
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Some remarks on the p̂k

Consider for simplicity the case with no censoring. Let

Nk =
k∑

l=1

dk

be counting process of deaths. dk = Nk − Nk−1, r(uk) = n − Nk .

Assume dk |N1, . . . ,Nk−1 ∼ bin(r(uk−1), pk). Then

E[p̂k − pk |N1, . . . ,Nk−1] = 0.

This implies E[p̂k ] = E [E [p̂k |N1, . . . ,Nk−1]] = pk and for k ′ > k ,

Cov[p̂k , p̂k ′ ] = E[(p̂k − pk)E[p̂k ′ − pk ′ |N1, . . . ,Nk ′−1]] = 0

Thus p̂k ’s uncorrelated.
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Moreover,

Varp̂k = Var[E [p̂k |N1, . . . ,Nk−1] + EVar[p̂k |N1, . . . ,Nk−1]] =

0 + E[pk(1− pk)/r(uk−1)]

So we may estimate Varp̂k by

p̂k(1− p̂k)/r(uk−1)

Note Mk = Nk −
∑k

l=1 pl r(ul−1) is a martingale with respect to
‘history’ N1, . . . ,Nk−1:

E[Mk |N1, . . . ,Nk−1] = Mk−1 +E[dk − r(uk−1)pk |r(uk−1)] = Mk−1

This implies uncorrelated increments Mk −Mk−1.

Mk is centered/compensated version of Nk :

E[Mk ] = E[Mk−1] = . . . = E[M1] = 0
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Confidence intervals

Issues: 0 ≤ S(t) ≤ 1. This is not respected by previously
mentioned confidence intervals.

KM discusses various solutions including deriving confidence
interval based on transformed S(t) and transforming back.

KM section 4.4 also discusses simultaneous confidence bands.
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log(− log(·))-transformation

L(t) = log(H(t)) = log(− log(S(t))

is a function on R (unrestricted). Let L̂(t) = log(− log(Ŝ(t)) with
standard error σL. Then approximate 95% confidence interval for
L(t) is

[L̂(t)− 2σL; L̂(t) + 2σL].

Transforming back we obtain approximate 95% interval for S(t):

[(Ŝ(t))exp(−2σL); (Ŝ(t))exp(+2σL)].

Finally, by δ-method,

σL ≈ std.err(Ŝ(t))/(log(Ŝ(t))Ŝ(t))

See KM (4.3.2).
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Log rank test

Non-parametric test for equality of survival distributions for two
groups (e.g. different treatments) with hazard function h1 and h2.

I.e. null hypothesis is H0 : h1(·) = h2(·).

Use notation as for the Kaplan-Meier estimate:

▶ D = D1 ∪ D2 where D1 and D2 are the sets of distinct death
times for each group.

▶ d1(t
∗) and d2(t

∗) denote the deaths at time t∗ ∈ D in groups
1 and 2

▶ r1(t
∗) and r2(t

∗) denote the numbers at risk at time t∗ ∈ D
in groups 1 and 2
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Heuristic derivation of log-rank test

For each t∗ we have 2× 2 table:

r1(t
∗) d1(t

∗) r1(t
∗)− d1(t

∗)
r2(t

∗) d2(t
∗) r2(t

∗)− d2(t
∗)

r(t∗) d(t∗) r(t∗)− d(t∗)

Conditional on t∗, r1(t
∗) and r2(t

∗) assume

di (t
∗)|t∗, r1(t∗), r2(t∗) ∼ bin(ri (t

∗), pi (t
∗))

and independent where pi (t
∗) = hi (t

∗)dt∗, i = 1, 2
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Under H0, d1(t
∗)|d(t∗), r1(t∗), r2(t∗) follows hypergeometric

distribution (exercise) with mean and variance

e1(t
∗) = r1(t

∗)
d(t∗)

r(t∗)
v1(t

∗) =
r1(t

∗)r2(t
∗)(r(t∗)− d(t∗))d(t∗)

r(t∗)2(r(t∗)− 1)

Note: this does not depend on the common unknown values of h1
and h2 !

Note: under the alternative h1(t
∗) > h2(t

∗) we would expect
d1(t

∗) > e1(t
∗) - and vice versa

Log-rank test statistic∑
t∗∈D(d1(t

∗)− e1(t
∗))√∑

t∗∈D v1(t∗)

Approximately N(0, 1) under H0.
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▶ closely related to Fisher’s exact test for contingency tables
(conditioning on sufficient statistics under null hypothesis).

▶ same test statistic obtained with d2(t
∗)’s (symmetry).

▶ weak test if we do not have either h1(·) > h2(·) or
h1(·) < h2(·).

▶ test is non-parametric since it does not involve any
assumptions regarding individual shapes of h1 and h2.

Implemented in the R survdiff() procedure.

KM Section 7.3 gives further details.
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