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Non-parametric vs. parametric

Suppose we want to estimate unknown function, e.g. survival
function.

Approaches:

▶ Non-parametric using Kaplan-Meier. Advantage: no
assumption regarding type of distribution. Disadvantage:
requires identically distributed observations (usually
independence assumption too)

▶ Parametric model. Advantage: we only need to estimate a
few parameters that completely characterize distribution (e.g.
exponential or Weibull) - gives low variance of estimates. Can
be extended to non-iid observations using regression on
covariates. Disadvantage: assumed model class may be (or
always is) incorrect leading to model error or in other words,
bias.

Possible to combine the best of two approaches ?
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Semi-parametric approach - Cox’s proportional hazards
model

Sir David Cox in a ground-breaking paper (‘Regression models and
life tables’, 1972) suggested the following model for the hazard
function given covariates z ∈ Rp:

h(t; z) = h0(t) exp(z
Tβ), β ∈ Rp.

Here h0(·) completely unspecified function except that it must be
non-negative.

Thus model combines great flexibility via non-parametric h0(·)
with the possibility of introducing covariate effects via exponential
term exp(zTβ)

This model has become standard in medical statistics.
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Some properties

Cumulative hazard:

H(t; z) = exp(zTβ)

∫ t

0
h0(u)du = exp(zTβ)H0(t)

Survival function

S(t; z) = S0(t)
exp(zTβ) S0(t) = exp(−H0(t))

Proportional hazards:

h(t; z)

h(t; z ′)
= exp((z − z ′)Tβ)

i.e. constant hazard ratio for two different subjects - curves can not
cross ! - this should be checked in any application.
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Estimation - partial likelihood
Model useless if we can not estimate parameter β.

Problem: we can not use likelihood when h0(·) unspecified.

Second break-through contribution of Cox: invention of partial
likelikehood for estimating β.

Suppose we have observations (ti , δi ) as well as (fixed) covariates
z1, . . . , zn, i = 1, . . . , n. We assume no ties (all ti distinct) and
define D ⊆ {1, . . . , n} as

D = {l |δl = 1}
- i.e. the index set of death times.

For any t ≥ 0 we further define the risk set

R(t) = {l |tl ≥ t}
i.e. the index set of subjects at risk at time t.
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The partial likelihood

The partial likelihood is

L(β) =
∏
l∈D

exp(zTl β)∑
k∈R(tl )

exp(zTk β)

Cox suggested to estimate β by maximizing L(β).

▶ does not depend on h0
▶ does not depend on actual death times - only their order

▶ censored observations only appear in risk set (as for
Kaplan-Meier)

Cox’s idea has proven to work very well - but why ? Lots of people
have tried to make sense of this partial likelihood.
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Cox’s intuition

Consider for simplicity the case of no censoring and let
t(1), . . . , t(n) denote the set of ordered death times.

We can equivalently represent data as the set of inter-arrival times
vi = t(i) − t(i−1) (taking t(0) = 0) together with the information
r1, r2, . . . , rn about which subject died at each time of death - i.e.
ri = l if subject l was the ith subject to die.

Cox then factored likelihood of (v1, . . . , vn, r1, . . . , rn) as (using
generic notation for densities and probabilities)

f (v1)p(r1|v1)f (v2|v1, r1)p(r2|v1, v2, r1) · · ·
f (vn|v1, . . . , vn−1, r1, . . . , rn−1)p(rn|v1, . . . , vn, r1, . . . , rn−1)
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Cox argued that terms f (vi | . . .) could not contribute with
information regarding β since the interarrival times can be fitted
arbitrary well regardless of β when h0 is unrestricted - we can
essentially just choose h0 to consist of ‘spikes’ at each death time.

Thus estimation of β should be based on remaining factors

L(β) =
n∏

i=1

p(ri |Hi )

where Hi = {v1, . . . , vi , r1, . . . , ri−1} history/previous observations.

Here p(ri |Hi ) is the probability that subject ri is the ith person to
die given the previous observations.
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More precisely, let Ri denote the random index of the ith subject
that dies (Ri = l means that Tl is the ith smallest death time, i.e.
TRi

= T(i) = Tl).

Assume that p(l |Hi ) only depends on Hi through the knowledge
that the ith death happens at time t(i) and that R(t(i)) are the
ones at risk at time t(i).

Thus

p(l |Hi ) = P(Ri = l |TRi
∈ [t(i), t(i) + dt[,R(t(i)) = A)

This is the probability that l is the ith person to die given that the
ith death happens at time t(i) and that the persons in A are at risk
at time t(i) (thus probability is zero if l ̸∈ A)
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We now express the conditional probability in terms of the hazard
function:

P(Ri = l ,TRi
∈ [t(i), t(i) + dt[|R(t(i)) = A)

=P(Tl ∈ [t(i), t(i) + dt[,Tk > Tl , k ∈ A \ {l}|R(t(i)) = A)

‘ =′h0(t(i)) exp(z
T
l β)dt

∏
k∈A\{l}

(1− h0(t(i)) exp(z
T
k β)dt)

Note ‘=’ because we actually replace Tk > Tl by Tk > t(i) + dt.
This does not really matter since dt infinitesimal.

NB: if Ri = l then t(i) = tl so in the following we replace t(i) with
tl .
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Finally,

P(Ri = l |TRi
∈ [tl , tl + dt[,R(tl) = A)

=
P(Ri = l ,TRi

∈ [tl , tl + dt[|R(tl) = A)

P(TRi
∈ [tl , tl + dt[|R(tl) = A)

=
P(Ri = l ,TRi

∈ [tl , tl + dt[|R(tl = A))∑
j∈R(tl )

P(Ri = j ,TRi
∈ [tl , tl + dt[|R(tl) = A)

=
h0(tl) exp(z

T
l β)dt

∏
k∈R(tl )\{l}(1− h0(tl) exp(z

T
k β)dt)∑

j∈R(tl )
h0(tl) exp(z

T
j β)dt

∏
k∈R(tl )\{j}(1− h0(tl) exp(z

T
k β)dt)

=
exp(zTl β)∑

k∈R(tl )
exp(zTk β)

Note: last = follows after cancelling h0(tl)dt and noting that
(1− h0(tl) exp(z

T
k β)dt) tends to one when dt tends to zero.

NB: denominator is hazard for minimum of Tk , k ∈ R(tl) (exercise
18)
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Conditional likelihood for matched case-control study

Cox’s idea very closely related to conditional likelihood for matched
case-control studies.

Let X denote a binary random variable (e.g. sick/healthy) for an
individual in a population. We want to study the impact of a
covariate z on X .

Assume that the population can be divided into homogeneous
groups (strata) so that probability of being ill is given by a logistic
regression

P(X = 1) = pi (z) =
exp(αi + βz)

1 + exp(αi + βz)

for an individual in the ith strata and with the covariate z .
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Suppose X1 = 1 with covariate z1 is observed for a sick person in
the ith stratum. In a matched case-control study this observation
is paired with an observation X2 = 0 with covariate z2 for a
randomly selected healthy person in the same stratum.

The conditional likelihood is now based on the conditional
probabilities

P(X1 = 1|X1 = 1,X2 = 0 or X1 = 0,X2 = 1) =

pi (z1)(1− pi (z2))

pi (z1)(1− pi (z2)) + (1− pi (z1))pi (z2)

This reduces to
exp(βz1)

exp(βz1) + exp(βz2)

which is free of the strata specific intercept αi .

Note αi is a nuisance parameter when we are just interested in β.
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Invariance argument
Again consider the case of no censoring. Kalbfleisch and Prentice
noticed that if one applies a strictly increasing differentiable
function g to the survival times T1, . . . ,Tn then T̃i = g(Ti ) again
follows a proportional hazards model with a completely unspecified
hazard function h̃0 (exercise 17).

Hence estimation problem for β the same regardless of whether we
consider Ti ’s or T̃i ’s.

They thus concluded that only the ordering (ranks) of the survival
times and not the magnitudes of the survival times could matter
for inference on β.

One can verify (exercise 23) that for the ranks Ri ,

P(R1 = r1, . . . ,Rn = rn) = P(Tr1 < Tr2 < · · · < Trn)

is precisely Cox’s partial likelihood.
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Profile likelihood

Cox’s partial likelihood can also be derived as a profile likelihood.

Consider likelihood (assuming no ties)

n∏
i=1

[h0(ti )dt exp(z
T
l β)]

δi exp[− exp(zTi β)

∫ ti

0
h0(u)du].

Let’s try to maximize wrt h0. First, we need h0(tl) > 0 for l ∈ D.
At the same time we should take h0(u) = 0 between death times.

So we let h0(t)dt = αl in very small intervals around death times,
[tl , tl + dt[, l ∈ D, and zero elsewhere. Note likelihood does not
inform about h0(t) for t larger than maxi ti .
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Then likelihood becomes

L(α, β) =

(∏
l∈D

αl exp[z
T
l β]

)
exp(−

n∑
i=1

exp(zTi β)
∑

l∈D:tl≤ti

αl)

=

(∏
l∈D

αl exp[z
T
l β]

)
exp(−

∑
l∈D

αl

∑
i∈R(tl )

exp(zTi β))

Taking log and differentiating wrt αl we obtain

∂

∂αl
log L(α, β) =

1

αl
−
∑

j∈R(tl )

exp(zTj β)

Setting equal to zero and solving wrt αl gives

α̂l(β) =
1∑

j∈R(tl )
exp(zTj β)
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Plugging in α̂l(β) for αl we finally obtain profile likelihood:

Lp(β) = L(α̂, β) =

(∏
l∈D

exp(zTl β)∑
j∈R(tl )

exp(zTj β)

)
exp(−|D|)

which is Cox’s partial likelihood.

As a byproduct we obtain the Breslow estimate of H0:

Ĥ0(t) =
∑
l∈D:
tl≤t

1∑
j∈R(tl )

exp(zTj β)

where we replace β by partial likelihood estimate β̂.

This reduces to Nelson-Aalen estimator if β = 0.

Note Ĥ0(t) is discontinuous in contrast to H0(t) =
∫ t
0 h0(u)du.

Ĥ0(t) limiting case of H0 with mass increasingly concentrated
around death times.

Thus our estimate of H0 is in some sense on the boundary of the
‘parameter space’ for H0.
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Estimating function point of view

All previous derivations more or less heuristic.

However, not crucial to understand Cox’s partial likelihood as a
likelihood or as derived from a likelihood.

Just consider properties of associated estimating function.

Score of partial likelihood is an estimating function which (see next
slide) is

▶ unbiased (each term mean zero)

▶ sum of uncorrelated terms (gives CLT)

- general theory for estimating functions suggests that partial
likelihood estimates asymptotically consistent and normal.
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Variance and mean heuristics - assuming no censoring

Score function

u(β) =
d

dβ
log L(β) =

n∑
i=1

ui (β)

is sum of n terms

ui (β) = zRi
− E[zRi

|TRi
∈ [t(i), t(i) + dt[,R(t(i))].

Each term has mean zero:

E[ui (β)] = E[E[ui (β)|Hi ]] = 0

Moreover, terms are uncorrelated. For i < j :

E[ui (β)uj(β)] = E[ui (β)E[uj(β)|Hj ]] = 0

Thus good reason to believe that CLT works for score function.
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Asymptotic properties of estimates and tests
The ‘observed information’ for the partial likelihood is

j(β) = − d

dβT
u(β) =

n∑
i=1

Var[zRi
|TRi

∈ [t(i), t(i) + dt[,R(t(i))] =

n∑
i=1

Var[ui (β)|Hi ]

‘Information’ (see next slide for second ‘=’)

i(β) = Ej(β) = Var(u(β))

In analogy with usual asymptotic results we obtain for large n,

(β̂ − β) ≈ N(0, i(β)−1)

In practice we estimate i(β) by j(β̂). This can be used for
constructing confidence intervals in the usual way.

Moreover, we can construct Wald tests, score-tests and
‘likelihood-ratio’ tests in the usual way. 20 / 28



Second ‘Bartlett identity’

Since E(ui (β)|Hi ) = 0,

Varui (β) = EVar(ui (β)|Hi ) + VarE(ui (β)|Hi ) = EVar(ui (β)|Hi )

Moreover, since u(β) is a sum of uncorrelated terms,

Varu(β) =
n∑

i=1

Varui (β)

Combining the above,

Ej(β) =
n∑

i=1

EVar(ui (β)|Hi ) = Varu(β)
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Asymptotic distribution - sketch

Let β∗ denote ‘true’ value of regression parameter.

First order (multivariate) Taylor around β̂

u(β∗) = u(β̂) +
d

dβT
u(β)|β=β̃(β

∗ − β̂) = j(β̃)(β̂ − β∗)

where |β̃ − β∗| ≤ |β̂ − β∗| and we have used u(β̂) = 0.

Thus
(β̂ − β∗) = j(β̃)−1u(β∗).

Moreover

i(β∗)1/2(β̂ − β∗) = (i(β∗)−1/2j(β̃)i(β∗)−1/2)−1i(β∗)−1/2u(β∗)
(1)
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Assume now as n tends to infinity,

i(β∗)−1/2u(β∗) → N(0, I ) (CLT)

(convergence in distribution) and

i(β∗)−1/2j(β̃)i(β∗)−1/2 → I

(convergence in probability).

Combining this with (1) on previous slide we obtain

i(β∗)1/2(β̂ − β∗) → N(0, I )

in distribution.

In other words
β̂ ≈ N(β∗, i(β∗)−1)

23 / 28



Consider H0 : β = β0. Several possibilities under H0:

▶ (Wald) j(β0)
1/2(β̂ − β0) ≈ N(0, I )

▶ (Score test) j(β0)
−1/2u(β0) ≈ N(0, I )

▶ (‘likelihood ratio) −2 log(L(β0)/L(β̂)) ≈ χ2(p)

See KM 8.3 and 8.5 for further details.

NB: in the case of zi ∈ {0, 1} (two-group scenario), score-test for
H0 : β = 0 is equivalent with log-rank test (exercise 19).
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Data with ties
Suppose we have tied death times

t∗11 = t∗12 = · · · = t∗1d1 < t∗21 = · · · = t∗2d2 < · · · < t∗r1 = · · · = t∗rdr

I.e. r distinct death times with dl deaths at the l ’ distinct time.
Let z∗lj be the covariate for the individual with death time t∗lj and

let z∗l · =
∑dl

j=1 z
∗
lj .

Suppose we knew t∗l1 < t∗l2 < · · · < t∗ldl , l = 1, . . . , r and let Bl(j−1)

consist of individuals who die at times t∗l1, . . . , t
∗
l(j−1).

Then Cox’s partial likelihood is

r∏
l=1

dl∏
j=1

exp(βTz∗lj )∑
k∈R(t∗l1)\Bl(j−1)

exp(zTk β)

=
r∏

l=1

exp(βTz∗l ·)∏dl
j=1[

∑
k∈R(tl1)

exp(zTk β)−
∑

k∈Bl(j−1)
exp(zTk β)]
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When we do not know the ordering of t∗l1, . . . , t
∗
ldl

we can not

compute term
∑

k∈Bl(j−1)
exp(zTk β).

Breslow: simply ignore this sum. Resulting partial likelihood
becomes

r∏
l=1

exp(βTz∗l ·)

(
∑

k∈R(tl1)
exp(zTk β))

dl

Efron: replace sum by j − 1 times average, that is

∑
k∈Bl(j−1)

exp(zTk β) ≈ (j − 1)
1

dl

dl∑
k=1

exp(βTz∗lk)
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Cox’s discrete time proportional odds model
Reuse notation from actuarial estimate but introduce covariates:

pk(z) = P(indiv. with covariates z dies in [uk−1, uk [| alive at time uk−1).

Cox proposed proportional odds model:

Ok(z) =
pk(z)

1− pk(z)
=

pk(0)

1− pk(0)
exp(zTβ) = Ok(0) exp(z

Tβ)

Let Dk be index set of dk individuals who die in [uk−1, uk [.
Probability that precisely individuals in Dk die given risk set
R(uk−1) is∏
l∈Dk

pk(zl)
∏

l∈R(uk−1)\Dk

(1−pk(zl)) =
∏
l∈Dk

Ok(zl)
∏

l∈R(uk−1)

(1−pk(zl))

Probability that dk individuals die:∑
A⊆R(uk−1):

#A=dk

∏
l∈A

Ok(zl)
∏

l∈R(uk−1)

(1− pk(zl))
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Discrete time partial likelihood

Partial likelihood based on probabilities that individuals in Dk die
given dk individuals die and given R(uk−1).

Only consider intervals with dk > 0

L(β) =
∏

k:dk>0

exp(
∑

l∈Dk
zTl β)∑

A⊆R(uk−1):
#A=dk

exp(
∑

l∈A zTl β)

Note: Ok(0) plays the same role as exp(αi ) in matched case
control model.

Different approaches to handling ties vary regarding computational
complexity. On modern computers all options usually feasible.
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