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Abstract

The purpose of this note is to show how statistical theory for infer-
ence in balanced ANOVA models can be conveniently developed using
orthogonal projections. The approach is exemplified for one- and two-
way ANOVA and finally some hints are given regarding extension to
three- or higher-way ANOVA.

1 Prerequisites on factors and projections

Analysis of variance (ANOVA) models are specified in terms of grouping vari-
ables or factors. Suppose observations yi are indexed by a set I of cardinality
n. A factor F is a function that assigns a grouping label among a finite set
of labels to each observation. E.g. F (i) = q means that observation yi (or
index i) is assigned to group/level q for the factor F . Suppose F generates
k groups. The design matrix ZF corresponding to F is then n × k and the
iqth entry of ZF is 1 if i is assigned to group q and 0 otherwise. Note that
in many applications, i is a multi-index of the form i = i1i2 . . . ip for p ≥ 1.

For any factor F we denote by LF the column space of ZF . The orthogonal
projection on LF is denoted PF . The result of applying PF to a vector (yi)i∈I
is that yi is replaced by the average of the observations in the group that i
belongs to (i.e. the average of those yl for which F (l) = F (i)).

Two factors play a special role. The unit factor I has a unique level for
each observation so LI = Rn and PI = I (with an abuse of notation I is
used both for the unit factor and identity matrix). The factor 0 assigns all
observations to the same group so L0 = span{1n} and P0 = 1n1

T
n/n. Note

that P0y is simply the vector where each component is given by the average
ȳ =

∑
i∈I yi/n. For any factor F , L0 ⊆ LF ⊆ LI .
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A factor F is said to be balanced if there is a common number m of
observations at each of the k levels (whereby n = mk). In this case, the
orthogonal projection PF on LF is

PF =
1

m
ZFZ

T
F . (1)

This result is crucial in the following and the reason why we focus on balanced
factors.

2 One-way ANOVA

Consider the model

Yij = ξ + Ui + ϵij, i = 1, . . . , k, j = 1, . . . , ni,

where ξ ∈ R, Ui ∼ N(0, τ 2), ϵij ∼ N(0, σ2), τ 2, σ2 ≥ 0, and the variables Ui

and ϵij, are independent i = 1, . . . , k and j = 1, . . . , ni.
Let I consist of indices ij for i = 1, . . . , k and j = 1, . . . , ni, and define

the factor F by F (ij) = i. Then stacking variables on top of each other we
can write the model in vector form as

Y = 1nξ + ZFU + ϵ

where n is the total number of observations. As noted in the previous section,
ZF is the design matrix corresponding to F : the ij, qth entry of ZF is 1 if
Yij belongs to the qth group and zero otherwise. We will assume that F is
balanced so that ni = m for all i.

2.1 Orthogonal decomposition

We now obtain an orthogonal decomposition of Rn:

Rn = V0 ⊕ VF ⊕ VI

where V0 = L0 = span(1n), VF = LF ⊖V0 and VI = Rn⊖LF . Here ⊕ denotes
sum of orthogonal subspaces:

L1 ⊕ L2 = {x+ y|x ∈ L1, y ∈ L2}
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for orthogonal subspaces L1 and L2, and ⊖ denotes orthogonal complement:

L2 ⊖ L1 = {x ∈ L2|xTy = 0 ∀y ∈ L1}

for L1 ⊆ L2. The dimensions of V0, VF and VI are 1, k − 1 and n − k, and
the orthogonal projections on V0, VF and VI are Q0 = P0, QF = PF −P0 and
QI = I − PF (see exercise 1).

Using the orthogonal projections we also obtain an orthogonal decompo-
sition of the data vector:

Y = Q0Y +QFY +QIY

into components falling in V0, VF and VI . The covariance matrix is decom-
posed as:

CovY = CovZFU + Covϵ = mτ 2PF + σ2I = λPF + σ2QI

where λ = mτ 2 + σ2. Here we used (1) which gives CovZFU = τ 2ZFZ
T
F =

τ 2mPF and I = PF + QI . Note that there is a one-to-one correspondence
between the pairs (λ, σ2) and (τ 2, σ2).

The components Q0Y , QFY and QIY are independent since their covari-
ances are zero. For example

Cov(Q0Y,QFY ) = Q0ΣQF = Q0(λPF + σ2QI)QF

which is zero since PF = Q0+QF and all products Q0QF = Q0QI = QFQI =
0.

Since
CovY = λPF + σ2QI = CovPFY + CovQIY

we also consider in the next section the coarser decomposition

Y = PFY +QIY

of Y into independent components PFY and QIY falling in LF and VI .

2.2 Estimation using factorization of likelihood

Note PF1n = Q01n = 1n and QI1n = 0. Moreover QIPF = 0. Hence[
PF

QI

]
Y ∼ N

((
1nξ
0n

)
,

[
λPF 0
0 σ2QI

])
.
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We can thus base maximum likelihood estimation of (ξ, λ) on PFY and max-
imum likelihood estimation of σ2 on QIY .

More precisely,

|Σ|−1/2 exp(−1

2
(Y − 1nξ)

TΣ−1(Y − 1nξ)) =

λ−k/2 exp(− 1

2λ
∥PFY − 1nξ∥2)× (σ2)−k(m−1)/2 exp(− 1

2σ2
∥QIY ∥2)

where we used Σ−1 = σ−2QI + λ−1PF and |Σ| = λk(σ2)mk−k (see exer-
cises 2,3,5). The two factors in the above likelihood are in fact ‘general-
ized’ densities of the ‘degenerate’ normal vectors PFY and QIY (i.e. these
vectors are n dimensional but their distributions are concentrated on lower-
dimensional subspaces of dimension k and n− k).

Consider e.g. the factor λ−k/2 exp(−1
2
∥PFY − 1nξ∥2) involving the pa-

rameters λ and ξ. We can maximize this with respect to λ and ξ in ex-
actly the same way as when we previously considered the likelihood of a
linear normal model Nn(µ, σ

2I). In our case the data vector is PFY and
µ = 1nξ ∈ L0 = span{1n}. We thus obtain

1̂nξ = P0PFY = P0Y and λ̂ = ∥PFY − P0Y ∥2/k = SSB/k.

Proceeding in the same way for the second factor (where there is no mean
parameter), we obtain

σ̂2 = ∥QIY ∥2/(k(m− 1)) = SSE/(k(m− 1)).

Note that QFY ∼ Nn(0, λQF ). By exercise 6, ∥PFY − P0Y ∥2 = ∥QFY ∥2 ∼
λχ2(k−1) which has mean λ(k−1). Thus λ̂ is biased. An unbiased (REML)
estimate is given by

λ̃ = ∥PFY − P0Y ∥2/(k − 1) = SSB/(k − 1).

3 Two-way analysis of variance

Consider now a model with two factors T (treatment) and P (plot) with
numbers of levels dT and dP . Moreover let P × T be the cross-factor (has
dPdT levels - one for each combination of levels of P and T ). More specifically,
I consists of indices ptr and the factor mappings are P (ptr) = p, T (ptr) = t,
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and P×T (ptr) = pt. Assume P×T is balanced with nP×T = m observations
for each level. Then P and T are balanced too with numbers of observations
nP = mdT and nT = mdP for each level.

A two-way ANOVA model with fixed T effects and random P and P ×T
effects is

Yptr = ξ + βt + Up + Upt + ϵptr p = 1, . . . , dP , t = 1, . . . , dT , r = 1, . . . ,m,

where the Up ∼ N(0, σ2
P ), Upt ∼ N(0, σ2

P×T ) and ϵptr ∼ N(0, σ2) are inde-
pendent. With a convenient abuse of terminology we refer to P and P × T
as random factors. The random effects Up and Upt can e.g. serve to model
soil variation between plots in a field in case of an agricultural experiment.
In vector form the model is

Y = µ+ ZPUP + ZP×TUP×T + ϵ

where µ ∈ LT . The vectors Y , UP and UP×T are again obtained by stacking,
e.g. UP = (U1, . . . , UdP )

T.

3.1 Orthogonal decomposition

Similar to the one-way ANOVA we define:

V0 = L0 VT = LT ⊖ V0 VP = LP ⊖ V0.

Since P×T is balanced it follows that PTPP = PPPT = P0 (exercise 7) which
implies QTQP = 0 where QT = PT − P0 and QP = PP − P0. Hence VT and
VP are orthogonal and we obtain an orthogonal decomposition of the sum of
LP and LT :

LP + LT = {v + w|v ∈ LP , w ∈ LT} = V0 ⊕ VP ⊕ VT .

We further define

VP×T = LP×T ⊖ (LP + LT ), VI = Rn ⊖ LP×T

and obtain the orthogonal decomposition:

Rn = V0 ⊕ VP ⊕ VT ⊕ VP×T ⊕ VI .

The dimensions of the ‘V ’ spaces are f0 = 1, fP = dP − 1, fT = dT − 1,
fP×T = dPdT − dP − dT + 1 = (dP − 1)(dT − 1), fI = n − dPdT . The
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orthogonal projections on the ‘V ’ spaces are : Q0 = P0, QP = PP − Q0,
QT = PT −Q0, QP×T = PP×T −QP −QT −Q0 and QI = I − PP×T .

In line with the orthogonal decomposition of Rn we also obtain two de-
compositions of Y into orthogonal components:

Y = Q0Y +QPY +QTY +QP×TY +QIY

= Q̃PY + Q̃P×TY + Q̃IY

where Q̃P = Q0 +QP = PP Q̃P×T = QP×T +QT and Q̃I = QI . The second
decomposition corresponds to a coarser decomposition

Rn = ṼP ⊕ ṼP×T ⊕ ṼI

into orthogonal subspaces ṼP = V0 ⊕ VP = LP , ṼP×T = VT ⊕ VP×T and
ṼI = VI associated with each random factor P , P × T and I.

The coarser decomposition of Rn corresponds to a decomposition of the
covariance matrix using the Q̃ projection matrices:

CovY = σ2
PnPPP + σ2

P×TnP×TPP×T + σ2I

= λP Q̃P + λP×T Q̃P×T + λIQ̃I

where

λP = σ2 + nP×Tσ
2
P×T + nPσ

2
P (2)

λP×T = σ2 + nP×Tσ
2
P×T (3)

λI = σ2.

The mean vector µ ∈ LT = V0 ⊕ VT is decomposed as:

µ = Q̃Pµ+ Q̃P×Tµ+ Q̃Iµ = Q0µ+QTµ+ 0 = µ0 + µT

where µ0 ∈ L0 and µT ∈ VT . Note the one-to-one correspondences between
the ‘σ2’s and the ‘λ’s and between µ and (µ0,µT ).

3.2 Relation to sum-to-zero constraint

In the model for the mean vector µ, the parameters ξ and β1, . . . , βdT are not
identifiable. This is because

µptr = ξ + βt = (ξ + k) + (βt − k) = ξ̃ + β̃t.
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Hence if we add k to ξ we obtain the same mean vector by just subtracting
k from the βt’s. One way to enforce identifiability is to require that one βt

is zero (i.e. choosing a reference group). Another option is to introduce the
sum-to-zero constraint:

∑dT
t=1 βt = 0. Note that vectors v ∈ VT are of the

form vptr = βt since they lie in LT and they further satisfy the sum-to-zero

constraint 1Tnv = dPm
∑dT

t=1 βt = 0 due to the orthogonality of V0 and VT .
In other words, enforcing the sum-to-zero constraint on the βt parameters
corresponds to the decomposition of µ into a constant vector ξ1n falling in
V0 and a vector v = (βt)ptr ∈ VT .

3.3 Estimation using factorization of likelihood

As for one-way ANOVA, Y is decomposed into independent normal vectors

Q̃PY ∼ N(µ0, λP Q̃P ) Q̃P×TY ∼ N(µT , λP×T Q̃P×T ) Q̃IY ∼ N(0, λIQ̃I).

Accordingly, the density for Y factorizes into a product of (generalized) den-
sities for Q̃PY , Q̃P×TY and Q̃IY similar to the case of the one-way ANOVA.
For instance, the density for Q̃PY is proportional to

λ
−dP /2
P exp(− 1

2λP

∥Q̃PY − µ0∥2).

Thus in analogy with estimation in the usual linear model Y ∼ Nn(µ, σ
2I)

we obtain
µ̂0 = P0Q̃PY = P0Y = 1nȲ··

and
λ̂P = ∥Q̃PY − P0Y ∥2/dP = ∥QPY ∥2/dP .

Similarly,
µ̂T = QT Q̃P×TY = QTY,

µ̂ = µ̂0 + µ̂T = PTY,

λ̂P×T = ∥Q̃P×TY −QTY ∥2/(dPdT − dP ) = ∥QP×TY ∥2/(dPdT − dP ),

and
λ̂I = σ̂2 = ∥QIY ∥2/(n− dPdT ).
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Since VP and VP×T have dimensions fP = dP − 1 and fP×T = (dP −
1)(dT − 1) we often use these (cf. exercise 6) denominators instead of dP and
dPdT − dP for λP and λP×T . Then unbiased estimates

λ̃P = ∥QPY ∥2/fP λ̃P×T = ∥QP×TY ∥2/fP×T

are obtained for λP and λP×T . Note that the MLE for µ is in fact identical
to the MLE in the linear model with µ ∈ LT and no random effects.

3.3.1 Estimation of original variance components

Estimates of the original variances σ2
P and σ2

P×T can be obtained by simply
solving (2) and (3) with respect to these parameters. That is,

σ̃2
P = (λ̃P − λ̃P×T )/nP σ̃2

P×T = (λ̃P×T − σ̃2)/nP×T .

Note that there is no guarantee that these estimates are non-negative. In
fact there could be several reasons for obtaining negative variance estimates:

� if e.g. the true σ2
P is zero or close to zero it is not unlikely to encounter

λ̃P < λ̃P×T due to sampling variation.

� observations within a group could be negatively correlated which could
be reflected by a negative variance estimate (remember definition of
intra-class correlation).

� data deviates in some way (e.g. outliers) from the assumed model.

In general, if a negative variance estimate is obtained, it is recommended
(as always) to check carefully whether model assumptions seem valid. If
data does not seem to contradict the model, one may consider refitting the
model without the random factor for which a negative variance estimate was
obtained. If negative correlation within groups of the data is plausible one
may look into an alternative model to the assumed linear mixed model.

4 Strata

A crucial common point for the one- and two-way ANOVA models in the
previous sections is that the factorization of the likelihood is based on an
orthogonal decomposition induced by the random factors only. This is due

8



I PxT 

P 

T 

O 

Figure 1: Structure diagram for two-way ANOVA with random effects.

to the decomposition of the covariance matrix into terms given by scaled
projection matrices for the random factors.

The fixed effects are decomposed into components according to ‘V ’ spaces
for the fixed factors. These components are then assigned to strata corre-
sponding to ‘Ṽ ’ spaces for the random factors. We say that a factor F is
finer than G (or G coarser than F ) if levels of G can be obtained by merging
levels of F . We then write G ⪯ F . The rule for allocating fixed effects to
strata is then that F belongs to B strata (where B is a random factor) if B is
the coarsest random factor which is finer than F . This is of course assuming
that this rule makes sense, i.e. we work with an experimental design where
this rule gives a unique allocation of each fixed factor to one random factor.
It is for instance required that I is a random factor. Also, for fixed F and
random B1, B2, we can not have both F ⪯ B1 and F ⪯ B2 unless either
B1 ⪯ B2 or B2 ⪯ B1.

To get an overview of allocation to strata it is useful to draw a structure
diagram as shown for the two-way ANOVA in Figure 1. In the structure
diagram there is an arrow from F to G if G is coarser than F and there is
no intermediate factor which is coarser than F and finer than G. In Figure 1
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there are three strata (black, green and red) corresponding to the ‘random’
factors I, P × T and P . Note that here we can not have both P and T
random unless O is random too (if O was fixed in this case there would not
be a unique allocation of O to a random factor stratum). We also want to
respect the hierarchical principle for the mean structure so P ×T can not be
fixed if P is random.

A more general discussion of allocation to strata is given in Section 7.

5 Hypothesis tests and confidence intervals

We here exemplify how hypothesis tests are conducted in balanced ANOVAs
by considering one- and two-way ANOVAs.

5.1 One-way ANOVA

For the one-way ANOVA with random effects consider the F -statistic

F =
SSB/(k − 1)

SSE/(k(m− 1))
=

λ̃

σ̂2
∼

σ2 +mτ 2

σ2
F (k − 1, k(m− 1)) = (1 +mγ)F (k − 1, k(m− 1))

where γ = τ 2/σ2 is the signal to noise ratio. Thus with qL and qU e.g. 2.5%
and 97.5% quantiles for F (k − 1, k(m− 1)), we have

P (qL ≤ F/(1 +mγ) ≤ qU) = 95% ⇔
P ((F/qU − 1)/m ≤ γ ≤ (F/qL − 1)/m) = 95%

so that [(F/qU − 1)/m, (F/qL− 1)/m)] is a 95% confidence interval for γ, see
also Remark 5.10 in [1].

One hypothesis is of particular interest:

H0 : τ
2 = 0,

i.e. there is no variation between groups. A simple F -test for this is based
on the observation

τ 2 = 0 ⇔ γ = 0 ⇔ σ2 = λ.
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Thus large values of the F statistic above is critical for H0 and under H0, F
has a F (k − 1, k(m− 1)) distribution.

Note that the F statistic coincides with the F -test for no group effects
in a one-way ANOVA with fixed group effects (which is equivalent to the
likelihood ratio test for no group effects in the fixed effects one-way ANOVA).

5.2 Tests for fixed effects in two-way ANOVA

For the two-way ANOVA considered in Section 3 the interesting hypothesis
regarding fixed effects is

H0 : β1 = β2 = · · · = βdT

i.e. no fixed group effects. This is equivalent to that µT = 0 (referring to
the notation of Section 3.1). Thus for constructing the likelihood ratio test
we only need to consider the factor corresponding to the term Q̃P×TY ∼
N(µT , λP×T Q̃P×T ) which has density

λ
(dP dT−dP )/2
P×T exp(− 1

2λP×T

∥Q̃P×TY − µT∥2).

Thus the situation is equivalent to testing µ = 0 for a linear normal model
NdP dT−dP (µ, λP×T I). We can thus proceed as for a usual linear normal model
(without random effects) and obtain the F -test

F =
∥QTY ∥2

λ̃P×T

∼ F (dT − 1, (dP − 1)(dT − 1)).

5.3 Test for variance components in two-way ANOVA

Recall λI = σ2, λP×T = σ2 + nP×Tσ
2
P×T and λP = σ2 + nP×Tσ

2
P×T + nPσ

2
P .

Hence e.g. σ2
P×T = 0 ⇔ λI = λP×T . Thus a natural statistic (but not

likelihood-ratio statistic) for testing σ2
P×T = 0 is

F =
λ̃P×T

σ̂2

which has an F ((dP−1)(dT−1), n−dP×T ) distribution if σ2
P×T = 0. Big values

of F are critical for σ2
P×T = 0. Note λ̃P×T = ∥QP×TY ∥2/((dP − 1)(dT − 1))

so F is identical to the F -statistic for testing the hypothesis of no (fixed)
effect of the factor P × T in a linear normal model without random effects.
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5.4 Confidence intervals for parameters in two-way ANOVA

Regarding the mean vector µ = 1nξ + ZTβ where β = (β1, . . . , βdT ), we can
consider confidence intervals for components of ξ + βi of µ or for contrasts
δij = βi−βj corresponding to differences between group means. Here it is easy
to derive confidence intervals for the contrasts. Employing the orthogonal
decomposition µ = µ0 + µT , the contrasts only involve µT in the P × T
stratum. E.g. if c is a vector with c1i1 = 1, c1j1 = −1 and zeroes elsewhere
then

δij = βi − βj = cTµ = cTµT .

Thus δij can be estimated as

δ̂ij = cTµ̂T = cTQT Q̃P×TY ∼ N(βi − βj, λP×T c
TQT c)

and we can thus follow the usual route to constructing confidence intervals
based on the t-distribution combining the above normal distribution for δ̂ij
and the scaled χ2 distribution of λ̃P×T with degrees of freedom (dP −1)(dT −
1). Note

cTQT Q̃P×TY = cTQTY = ȳ·i· − ȳ·j·

and

cTQT c = cTPT c− cTP0c = cTPT c = (1,−1)(1/nT ,−1/nT )
T =

2

nT

.

Hence the t-statistic becomes
ȳ·i· − ȳ·j·√
2λ̃P×T/nT

which has a t((dP−1)(dT−1)) distribution under the null hypothesis βi = βj.
You can also get the above results by simply observing that

ȳ·i· − ȳ·j· = βi − βj +
m

nT

U·i −
m

nT

U·j +
1

nT

ϵ·i· −
1

nT

ϵ·j· ∼

N

(
βi − βj,

2

nT

(mσ2
P×T + σ2)

)
.

Note here m = nP×T so mσP×T + σ2 = λP×T .
Confidence intervals for the ‘λ’ variance parameters (including σ2 = λI)

are straightforward due to the exact scaled χ2 distributions of their estimates.
Confidence intervals for the original variance parameters (other than σ2) are
less straightforward since estimates for these are distributed as differences of
scaled χ2 distributions).
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6 Orthogonal decomposition for a K-way ANOVA

In this section we first construct an orthogonal decomposition for a balanced
three-way ANOVA and then generalize the approach to a K-way balanced
ANOVA for arbitrary K ≥ 1.

We know by now that for a two-sided ANOVA corresponding to factors F1

and F2 with F1×F2 balanced, there exists a decomposition of Rn into orthogo-
nal subspaces VI , VF1×F2 , VF1 , VF2 and V0. Suppose we introduce a third factor
F3 so that F1 × F2 × F3 is balanced too. Then also {VI , VF1×F3 , VF1 , VF3 , V0},
{VI , VF1×F2 , VF1 , VF2 , V0} and {VI , VF2×F3 , VF2 , VF3 , V0} are sets of orthogonal
subspaces. By analogy with two-way ANOVA with factors F = F1 × F2 and
G = F3 it also follows that VF1×F2 and VF3 are orthogonal and similarly for
the pairs VF1×F3 , VF2 and VF2×F3 , VF1 . It is also easy to see that

PF1×F2PF2×F3 = PF2 . (4)

This implies VF1×F2 and VF2×F3 are orthogonal. To see this note that the
corresponding projections are QF1×F2 = PF1×F2 − PF2 − QF1 and QF2×F3 =
PF2×F3 − PF2 − QF3 . We now check that QF1×F2QF2×F3 = 0 from which the
required orthogonality follows:

QF1×F2QF2×F3 = (PF1×F2 − PF2 −QF1)(PF2×F3 − PF2 −QF3) =

PF2 − PF2 − PF1×F2QF3 − PF2 + PF2 − 0−QF1PF2×F3 + 0 + 0 = 0.

Here, PF1×F2QF3 = 0 in analogy with a two-way ANOVA with factors F =
F1×F2 and G = F3, and QF1PF2×F3 = 0 by the same argument. Thus VF1×F2 ,
VF1×F3 and VF2×F3 are orthogonal too.

Defining

VF1×F2×F3 = LF1×F2×F3 ⊖ (V0 ⊕ VF1 ⊕ VF2 ⊕ VF3 ⊕ VF1×F2 ⊕ VF1×F3 ⊕ VF2×F3)

VI = Rn ⊖ VF1×F2×F3

we arrive at the orthogonal decomposition

Rn = VI ⊕A⊆{1,2,3} V×l∈AFl

letting V×l∈∅Fl
= V0.

The approach for the three-way ANOVA can be generalized to obtain the
following main result:
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Theorem 1. Suppose F1× · · ·×FK is balanced, K ≥ 1. Define, recursively,
for A ⊆ {1, . . . , K},

V×l∈AFl
= L×l∈AFl

⊖
∑
B⊂A

V×l∈BFl

with V×l∈∅Fl
= V0 = L0 and let

VI = Rn ⊖ L×K
l=1Fl

.

Then we have the orthogonal decomposition

Rn = VI ⊕A⊆{1,...,K} V×l∈AFl
.

Proof. We need to show that (*) V×l∈AFl
and V×l∈BFl

are orthogonal whenever
A,B ⊆ {1, . . . , K}, A ̸= B (this is already shown for K = 1, 2, 3). If A∩B =
∅ then (*) follows by analogy to a two-way ANOVA with factors F = ×l∈AFl

and G = ×l∈BFl. If B ⊂ A we define F = ×l∈BFl and G = ×l∈A\BFl. Then
V×l∈AFl

= VF×G and the result again follows by analogy to a two-way ANOVA
(VF and VF×G orthogonal). The case A ⊂ B is handled similarly. Finally if
C = A ∩ B is non-empty and neither A ⊂ B nor B ⊂ A, let F = ×l∈A\CFl,
G = ×l∈B\CFl, and H = ×l∈CFl. Then (*) holds by analogy to a three-way
ANOVA.

The dimensions of the spaces V×l∈AFl
are easy to obtain according to the

following theorem.

Theorem 2. Let the situation be as in the previous theorem. Then the
dimension of V×l∈AFl

is
∏

l∈A fl where fl = dl − 1 and dl is the dimension of
LFl

.

Proof. Let wlog A = 1, . . . , k, 1 ≤ k ≤ K. The proof is by induction in k.
By definition the dimension of VFi

is di−1 = fi so the result holds for k = 1.
We have

V×k
i=1Fi

= L×k
i=1Fi

⊖
(
L×k−1

i=1 Fi
⊕⊕B⊂{1,...,k−1}VFk××l∈BFl

)
.
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Thus the dimension of V×k
i=1Fi

is

k∏
i=1

(fi + 1)−
k−1∏
i=1

(fi + 1)−
∑

B⊂{1,...,k−1}

fk
∏
l∈B

fl

=fk

k−1∏
i=1

(fi + 1)−

fk ∑
B⊆{1,...,k−1}

∏
l∈B

fl − fk

k−1∏
l=1

fl


=

k∏
l=1

fl

where the second equality is by induction and the second follows from
∏k−1

i=1 (fi+
1) =

∑
B⊆{1,...,k−1}

∏
l∈B fl

∏
l∈{1,...,k−1}\B 1.

7 Decomposition into strata

In this section we discuss a general decomposition into strata corresponding
to factors with random effects. Let D be a set of factors and let B ⊆ D
denote the set of factors with random effects. We assume

1. the factors in D are ordered in the sense that we can not have both
F ⪯ F ′ and F ′ ⪯ F for different F, F ′ ∈ D (otherwise F and F ′ would
induce the same grouping of the observations).

2. there is an orthogonal decomposition Rn = ⊕F∈DVF of Rn into a sum of
subspaces VF , F ∈ D, with associated orthogonal projection matrices
QF .

3. the covariance matrix of the data vector is decomposed as

Σ =
∑
B∈B

σ2
BnBPB

where for B ∈ B,
PB =

∑
F∈D:F⪯B

QF . (5)
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We want Q̃B′ ’s, B′ ∈ B, so that

PB =
∑

B′∈B:B′⪯B

Q̃B′ (6)

where for each B ∈ B, Q̃B is an orthogonal projection on a subspace ṼB where
Rn = ⊕B∈BṼB and ṼB is a sum of VF subspaces. We want this because then
we obtain the decomposition

Σ =
∑
B∈B

σ2
BnBPB =

∑
B∈B

λBQ̃B where λB =
∑

B′∈B:B⪯B′

nB′σ2
B′

and hence a decomposition of Y into independent terms Q̃BY , B ∈ B (here
we interchanged order of summation and secondly interchanged B and B′).

The following theorem tells us when we may get what we want.

Theorem 3. A necessary and sufficient condition for (6) is that: for all
F ∈ D there exists a B ∈ B such that F ⪯ B and B ⪯ B′ for all other B′

with F ⪯ B′. If this condition holds we can define

ṼB′ =
∑

F∈D:B(F )=B′

VF and Q̃B′ =
∑

F∈D:B(F )=B′

QF .

Remark 1. Note that this condition implies that I has to be in B. This is
not a serious restriction since we will always include measurement error in
our models. It also combined with assumption 1 above implies that the B
mentioned in the condition is unique. In the expressions for ṼB′ and Q̃B′

above and in the proof below we use the notation B(F ) for the unique B
corresponding to F , F ∈ D.

Proof. We first show the sufficiency. Each of the factors F ⪯ B on the right
hand side of (5) has B(F ) = B′ for precisely one B′ ∈ B for which it must
hold that B′ ⪯ B (since F ⪯ B - here B and B′ interchanged compared to
the condition). Hence

PB =
∑

B′∈B:B′⪯B

∑
F∈D:B(F )=B′

QF

Thus we can define for B′ ∈ B, a subspace and associated orthogonal projec-
tion

ṼB′ =
∑

F∈D:B(F )=B′

VF and Q̃B′ =
∑

F∈D:B(F )=B′

QF .
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Each F ∈ D belongs to precisely one ṼB′ so Rn = ⊕B′∈BṼB′ .
To show that the condition is necessary consider any F ∈ D. Then

VF ⊆ ṼB for some unique B ∈ B. This means by (6) that QF is a part
of the sum defining PB. It follows from (5) that F ⪯ B. Assume F ⪯ Bi,
i = 1, . . . ,m whereB1 = B. Ifm = 1 there is nothing more to prove. Suppose
m ≥ 2 and assume to get a contradiction that B ̸⪯ B2. Since F ⪯ B2, by
(5), QF is a part of the sum defining PB2 . It follows that Q̃B must be a part
of the sum defining PB2 according to (6). But this is a contradiction since
B ̸⪯ B2.

8 Concluding remarks

This note essentially gives a simplified exposition of results presented in [3]. A
general exposition can also be found in [2]. We here considered the use of or-
thogonal decompositions only in the context of balanced ANOVAs. However,
the same principles apply for other types of linear mixed models allowing for
relevant orthogonal decompositions of the sample space. One example is a
random coefficient model for the well-known orthodontic data set consisting
of data for 27 children each with 4 measurements. Here one can e.g. observe
that the MLEs of the mean parameters are the same in the models with and
without random child effects.
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A Orthogonal projections

Suppose L is a subspace of Rn, n ≥ 1. Let L⊥ = {v ∈ Rn|vTw = 0 for all w ∈
L} denote its orthogonal complement.

Orthogonal decomposition: each x ∈ Rn has a unique decomposition

x = u+ v

where u ∈ L and v ∈ L⊥.

Orthogonal projection: u and v above are the orthogonal projections pL(x)
and pL⊥(x) of x on respectively L and L⊥.

Due to orthogonality of u and v, we obtain Pythagoras’ theorem:

∥x∥2 = ∥u∥2 + ∥v∥2.
A few facts regarding orthogonal projections:

(a) the orthogonal projection pL : Rn → L on L is a linear mapping. It is
thus given by a unique matrix-transformation pL(x) = Px where P is
an n× n matrix.

(b) the projection matrix P is symmetric (PT = P ) and idempotent (P 2 =
P ).

(c) conversely, if a matrix Q is symmetric, idempotent and L = colQ then
Q is the matrix of the orthogonal projection on L.

(d) if L = colX and X has full rank then P = X(XTX)−1XT.

(e) if P is the matrix of the orthogonal projection on L then I − P is the
matrix of the orthogonal projection on L⊥.

(f) if L1 and L2 are subspaces with L1 ⊂ L2 and associated orthogonal
projections P1 and P2, then the orthogonal projection on L2 ⊖ L1 is
P2 − P1.

Example: the orthogonal projection on a subspace spanned by a single vector

v is vTx
∥v∥2x.

Example: the orthogonal projection on a subspace spanned by orthogonal

vectors v1, . . . , vp is
∑p

i=1
vTi x

∥vi∥2x.
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B Exercises

1. Let L1 ⊂ L2 with orthogonal projections P1 and P2. Show that P2−P1

is the orthogonal projection on L2 ⊖ L1.

2. Show that an orthogonal projection only has eigen values 1 or 0.

3. For a symmetric matrix A show that the determinant |A| is the product
of A’s eigen values.

4. Show QIPF = 0

5. Let S = aP + bQ where P and Q are orthogonal projections with
P +Q = I and a, b ̸= 0. Show that the eigen values of S are the non-
zero eigen values a and b of aP and bQ. Show that S−1 = a−1P +b−1Q.

6. Show that ∥Y ∥2 ∼ σ2χ2(d) if Y ∼ N(0, σ2P ) and P is an orthogonal
projection on a subspace of dimension d (hint: use spectral decompo-
sition and the result above regarding the eigen values of P ).

7. Check that PPPT = P0 when P × T is balanced.

8. Check that LT + LP = V0 ⊕ VP ⊕ VT .
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