Mixed models with correlated measurement errors

Rasmus Waagepetersen

April 19, 2021

Example from Department of Health Technology

25 subjects where exposed to electric pulses of 11 different durations using two different electrodes ($3=$ pin, $2=$ patch).

The durations were applied in random order.
In total 550 measurements of response to pulse exposure.
Fixed effects in the model: electrode, Pulseform (duration), order of 22 measurements for each subject.

Random effects: one random effect for each subject-electrode combination (50 random effects).

Mixed model with random intercepts

Model:

$$
y_{i j k}=\mu_{i j}+U_{i j}+\epsilon_{i j k}
$$

where $i=1, \ldots, 25$ (subject), $j=2,3$ (electrode), and $k=1, \ldots, 11$ measurement within subject-electrode combination.
$\mu_{i j}$ fixed effect part of the model depending on electrode, Pulseform and order of measurement.
$U_{i j}$'s and $\epsilon_{i j k}$'s independent random variables.

Using lmer

fit=lmer(transfPT~electrodeId*Pulseform+ electrodeId*OrderFixed+(1|electrsubId), data=perception

Random effects:

Groups	Name	Variance	Std.Dev.
electrsubId (Intercept)	0.03479	0.1865	
Residual		0.01317	0.1148

Number of obs: 550, groups: electrsubId, 50
Large subject-electrode variance 0.03479 . Noise variance 0.01317

Serial correlation in measurement error ?

Maybe error $\epsilon_{i j k}$ not independent of previous error $\epsilon_{i j(k-1)}$ since measurements carried out in a sequence for each subject ?

For each subject-electrode combination ij plot residual $r_{i j k}$ (resid(fit)) against previous residual $r_{i j(k-1)}$ for $k=2, \ldots, 11$.

Correlation

cor.test(resi1,resi2)

Pearson's product-moment correlation
data: resi1 and resi2
$\mathrm{t}=8.5284, \mathrm{df}=498, \mathrm{p}$-value $<2.2 \mathrm{e}-16$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.27799660 .4311777
sample estimates:
cor
0.3569848

Mixed model with correlated errors

Analysis of residuals $r_{i j k}$ (which are estimates of errors $\epsilon_{i j k}$) suggests that $\epsilon_{i j k}$ are correlated (not independent).

Recall general mixed model formulation:

$$
Y=X \beta+Z U+\epsilon
$$

where ϵ normal with mean zero and covariance Σ.
So far $\Sigma=\sigma^{2} /$ meaning noise terms uncorrelated and all with same variance σ^{2}

Extension: Σ not diagonal meaning $\operatorname{Cov}\left[\epsilon_{i j k}, \epsilon_{i j k^{\prime}}\right] \neq 0$.
Many possibilities for Σ - we will focus on autoregressive covariance structure that is useful for serially correlated error terms.
Σ will be block-diagonal since we assume errors uncorrelated between subject-electrode combinations.

Basic model for serial correlation: autoregressive

Consider sequence of noise terms: $\epsilon_{i j 1}, \epsilon_{i j 2}, \ldots, \epsilon_{i j 11}$.
Model for variance/covariance:

$$
\operatorname{Cov}\left(\epsilon_{i j k}, \epsilon_{i j k^{\prime}}\right)=\sigma^{2} \rho^{\left|k-k^{\prime}\right|} \quad \mathbb{C o r r}\left(\epsilon_{i j k}, \epsilon_{i j k^{\prime}}\right)=\rho^{\left|k-k^{\prime}\right|}
$$

Thus

$$
\mathbb{V a r} \epsilon_{i}=\sigma^{2}
$$

and ρ is correlation between two consecutive noise terms,

$$
\rho=\operatorname{Corr}\left(\epsilon_{i j k}, \epsilon_{i j(k+1)}\right)
$$

AR(1) model:

$$
\begin{equation*}
\epsilon_{i j(k+1)}=\rho \epsilon_{i j k}+\nu_{i j(k+1)} \tag{1}
\end{equation*}
$$

where $\epsilon_{i j 1} \sim N\left(0, \sigma^{2}\right)$, and

$$
\nu_{i j l} \sim N(0, \omega) \quad \omega=\sigma^{2}\left(1-\rho^{2}\right) \quad I=2, \ldots, 11
$$

$\epsilon_{i j 1}, \nu_{i j 2}, \ldots, \nu_{i j 11}$ assumed to be independent.

Implementation

Not possible in lmer :(
However lme (from package nlme) can do the trick:
fit=lme(transfPT~factor (electrodeId) $*$ Pulseform+factor (electrodeId) $*$ OrderFixed, random=~1|electrsubId, data=perception, correlation=corAR1())
lme predecessor of lmer - both have pros and cons - but here lme has the upper hand.

SPSS: specification using Repeated. Here we can select

- repeated variable: order of observations within subject
- subject variable: noise terms for different "subjects" assumed to independent
- covariance structure for noise terms within subject
E.g. for perception data we may have 11 serially correlated errors for each subject-electrode combination but errors are uncorrelated between different subject-electrode combinations.

Estimates of variance parameters

With uncorrelated errors: $\tau^{2}=0.035 \sigma^{2}=0.013$ BIC -511
With autoregressive errors: $\tau^{2}=0.030 \sigma^{2}=0.018$ BIC - 646 $\rho=0.626$

Variance parameters not so different but quite big estimated correlation for errors. BIC clearly favors model with autoregressive errors.

Qualitatively same conclusions regarding significance of fixed effects (F-tests).

Not clear pattern regarding magnitudes of standard errors of parameter estimates (with or without correlated residuals)

Model assessment - residuals

Histogram of resi

Normal Q-Q Plot

Much larger residual variance for pin electrode than for patch electrode.

Fit model with variance heterogeneity:
fithetcorr=lme(transfPT~electrode*Pulseform+electrode*Orde」 random=~1|electrsubId, data=perception,
weights=varIdent (form=~1|electrode), correlation=corAR1())

Random effects:

> | Formula: ~ 1 \| electrsubId |
| :---: |
| (Intercept) |
| Residual |
| StdDev: |

Correlation Structure: AR(1)
Formula: ~1 | electrsubId

Parameter estimate(s):
Phi
0.578185

Variance function:
Structure: Different standard deviations per stratum Formula: ~1 | electrode
Parameter estimates:
pin patch
1.00000000 .4122666

BIC -814

Subject variance $0.1732^{2}=0.029$
Variance for electrode 3: $0.1691^{2}=0.028$
Variance for electrode 2: $0.1691^{2} \cdot 0.4122^{2}=0.0049$

Alternative: separate analyses for two electrodes ?

