Bayesian inference

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

April 8, 2024

1/26



Outline for today

> A genetic example
» Bayes theorem

> Examples

» Priors

» Posterior summaries

2/26



Bayes theorem

Bayes theorem for events A, B:

P(BIA)P(A)

P(AIB) = = 5g)

Combines marginal probability for A with conditional probability
for B given A to obtain conditional probability of A|B.

Bayes theorem for random variables X and Y:

fyIx)f(x)
f(y)

NB: ¢ = f(y) normalizing constant for unnormalized density

h(x) = f(y|x)f(x)

f(xly) = oc F(y[x)f(x)
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Example: forensic statistics

Population of n individuals each with bloodtype a or —a.

Population: {x1, x2,...,x,} where x; = (i, t;) and ¢t; is either a or
-a.

Stochastic variables G and B. G = i means ith person guilty. B is
bloodtype of guilty person (G =i = B =t;).

Prior distribution for G: P(G = i) = p;. Suppose we know B = a.

Then
P(B =alG =i)P(G =)

P(G=ilB=a)=
(C=ilB=2) P(B = a)
Note P(B = a|G = /) =1 if t; = a and zero otherwise. Hence if
ti = a, D
P(G=iB=3a)= —<———
Zl:t/:a pi

Note P(B = a) = Elzt/:a ps in general differs from proportion of
population with bloodtype a !
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The idea of Bayesian inference

Idea: in order to infer an unknown quantity € we should combine
information in the data with prior information (e.g. past
experience).

Formal approach: unknown parameter 6 is regarded as a random
variable. Prior information expressed using probability density p(6)
and information in data quantified using likelihood function.

Inference given data obtained via posterior distribution (Bayes
theorem)

p(0]y) = W x F(y10)p(68) o L(6)p(0)

(as usual factors not depending on 6 do not matter)
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NB: Bayesian inference mimics our daily approaches to handling
uncertainty where we implicitly combine sources of
data/likelihoods with prior knowledge.

Example: data: child late for dinner. Probability of interest

P( accident on the way home | child late). Here we use prior
probability P( accident) as well as “likelihoods” P(late|accident),
P(late|not accident) = q. If g big we worry less.

Advantage: enables the use of prior information when this is
available.

Disadvantage: requires the use of prior information. This may be

hard to obtain or different persons may have different prior
opinions.
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Example: beta-binomial

Suppose we observe X ~ b(n,#). Use beta prior

MNa+B)

a—1¢1 _ pg\B-1
o)’ 0

p(0) =
Posterior
P(Q’X) X Qx(l — 9)”_X0a_1(1 _ 0)5—1 _ 9X+a_1(1 _ 9)"_X+B_1

Hence posterior p(f|x) is beta-distributed (Beta(x + a, n — x + f3))
too !
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Plots of prior, likelihood and posterior when X =3 and n =10

with different choices of («, 3):
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Conjugate prior distributions

Beta distribution is an example of a prior which is conjugate for
the binomial likelihood: posterior distribution is beta too !

Other examples:
» Gamma is conjugate for Poisson
» normal/scaled inverse x? conjugate for linear normal model

Conjugate priors only available in simple situations.
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Poisson-Gamma

Suppose Yi, ..., Y|\ independent Poisson with mean A and we
choose (v, B) prior for A.

Posterior:

P(Aly) o NV exp(—nA)A* T exp(=A/B) = X exp(=A/[8/(1+nB)])

Hence posterior for A is ['(y. + a, 5/(1 + npB)).

Expressions for posterior means and variances for binomial-beta
and Poisson-gamma can be found in Chapter 6 in M & T.
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Linear normal model

Y|B,02% ~ N(XB,02]).
Priors: B|o? ~ N(0,¢l) and 0% ~ Sx2(f).

We already know from our treatment of linear mixed models that

2 2
Blo®,y ~ N <((;/ +XTX)_1XTY,(;2(%/ +XTX)—1> 1)

Note this converges to proper limit N(3,o2(XTX)™1) when
¢ — o0o. Note formal similarity with frequentist result for MLE S.

2

We can also show that o2|y is scaled x~2, see next slides.
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With ,{
p(ﬁ, 0'2) X (0’2)*5*1 EXP(—S/(2O'2))

and using Pythagoras
ly = XBI” = lly = XB|* + |1 X8 — X8|

we obtain

S_
2

XB|? _f_1 -

p(5.0%1y) (o) /20 e X g7y E e
1
262

—e 2 (B-BTxTx (8- ﬁ)( ) %—lefs‘;gi’?zss
where RSS = [|y — XBHQ is the sum of squared residuals.

From this we (again) obtain |02,y ~ N(B,02(XTX)™1)
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Further,

p(0'2|y) oc/e_zg]é(B_B)TXTX(IB—B)(U2)f-;—nle_S;Ustgdﬁ

_fin_y _SiRSS
2 e 252

:(27r)p/2(0—2)l7/2‘XTx|71/2(0_2)

_ftn—p_ 1 _S+RSS
O<(J2) 2 1e 202

Hence, 02|y ~ (RSS + S)x~2(f + n— p).

Hence provided RSS > 0 and n— p > 0, posterior also proper with
the improper prior p(3,02) < 1/0? (i.e. S = f = 0).
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Results with improper prior for 3 and o2

With R = (8 — j3)/o we obtain R|o2,y ~ N(0,(XTX)™1). Thus
R and o2 are conditionally independent given y.

With s?2 = RSS/(n — p) and p(f3,02) o< 1/02:
B-5
\/57

The product of independent N(0, (X X)) and
V/(n—p)x~2(n — p) gives a p-dimensional t distribution with
n — p degrees of freedom. Thus

B-pB
N

=R and R ly ~ N(O,(XTX) )/ (n = pIx2(n - p)

ly ~ t(p,(XTX)™',n—p)
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With v; the ith diagonal element of (XTX)~! we obtain

Bi — Bi

2

ly ~ t(n—p)
VS

Note again formal similarity with frequentist t-statistic !
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Improper priors

Priors
p(B)x1, BeRP
and
p(0?) x1/0?, 02>0

are improper (do not integrate to one).

In case of normal likelihood posterior is nevertheless proper
(limiting cases of normal and x~2 priors).

Reason for using improper prior: a) may seem more objective (but
this is not really true, see next slide for a cautionary example) b)
avoids choosing parameters like ¢, S, f in the normal example.

Danger: in complex models it may be hard to check that a
posterior is proper when improper priors are used.
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‘Non-informative’ and priors

Consider flat prior for 6 € [0, 1]. Priors for odds and log odds not

flat !
odds log odds

015

priorodds(o)
logoddsprior()

Hence whether a prior is non-informative depends on scale.

Rule of thumb: use non-informative priors on the scale that we
wish to draw inference for.
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Priors for odds and log odds obtained using transformation
theorem:

Suppose X ~ fx and Y = h(X) for differentiable and injective
function h. Then density of Y is

1
fy(y) = ————fx(x) where x = h~(y
)= gy 7 ) )
Also valid in the multivariate case. Then |- | is determinant and
dy _ [dy,
dx

is Jacobian matrix of partial derivatives.
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Large data sets
With large datasets, posterior results less sensitive to choice of

prior (likelihood dominates).

Example beta-binomial with x =5,n =10 and x = 50, n = 100

(in both cases MLE is 0.5):
L(0.5)/L(0.1) = 165.4 £(0.5)/L(0.1) = 1.53e22 II

«««««

«««««

Note: likelihoods look small compared to prior and posterior
because not normalized to integrate to one !
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Summarizing the posterior

For a vector (61, ...,60,) posterior summaries are often computed
for the components separately.

Hence for 8; we may compute posterior mean or median and
express posterior uncertainty in terms of posterior variance (not so
useful if posterior far from normal).

Posterior 95 % credibility interval: interval [/, u] (depending on
data) such that P(0; € [/, u]ly) = 95%. Often a central interval is
used: P(0; < uly) = P(0; > I|y) = 0.025.

95% Highest posterior density (HPD) region : H chosen so that
P(0 € H|y) = 0.95 and p(f|y) > p(f|y) whenever 6 inside H and

0 outside.

More sophisticated possibilities: e.g. posterior probability that
01 > 6 or look at ranks for components of 6 (e.g. which treatment
is best 7). 22/26



Confidence intervals versus posterior intervals

95% confidence interval: random interval which in 95% of future
hypothetical repetitions of the experiment would contain the
(fixed) unknown parameter 6 (frequentist interpretation).

95% posterior interval: Given the data y the posterior interval is
fixed while 0 is random. The 95% probability associated with the
posterior interval is the probability that 6 is in the interval given

the data. No reference to hypothetical repetitions of experiment.
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Exercises

1. Consider m iid binomial observations X; ~ b(n;, ) where 6 is
the common probability parameter. Compute the posterior
distribution of # when a beta prior is used for 6.

2. Suppose y|A is Poisson(A) and A is ['(«, 3). Show that y
marginally has a negative binomial distribution.

3. Compute the prior for p when logit(p) = log(p/(1 — p)) =0
and the prior for 3 is N(0,72). What happens if 72 — oo (try
to plot the prior for large 72) ?

4. Consider the linear normal model Y; ~ N(8,0?) (i.e. the
design matrix X is a column of 1's) and use the prior
p(B,0%) x 1/02.

4.1 Compute a 95% posterior credibility interval for (.

4.2 Compare with the frequentist 95% confidence interval. What
are the interpretations of the two intervals and how do the
interpretations differ ?
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5. Suppose observations 4,6,6,7,3,5,3,11,10,5 are
observations of jid Poisson random variables with mean .
Use a Gamma prior with mean 6 and variance 10. Compute
the posterior mean, variance, and 95% central posterior
interval for .

6. Verify (1) using results from prediction lecture (slide
Prediction in linear mixed model).
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A few results needed for the exercises
The density of '(«, 3) with shape « and scale j is

—x

f(x;a,B) = b x*Lexp(—x/B), x>0

Ma)

where I'(-) is the gamma function. Mean and variance are a3 and
a3?. If B is interpreted as the rate (inverse scale) then

«

F(xi0,8) = L x*Lexp(~fx), x>0

Ma)
The density of a negative binomial distribution with parameters «
and [ is

I'(y—i—a)( 1 ) B
ylf(a) *1+p57 1+

fly) = )Y y=0,1,2,...
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