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Today: selected topics in Bayesian statistics.

Asymptotics, REML, improper Gaussian
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Influence of number of observations/convergence of
posterior - binomial-beta

Beta-prior (α = 1.5 β = 3). Observations x = n/2,
n = 2, 6, 12, 24. Posterior mode 0.33, 0.41, 0.44, 0.47.
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Note: posterior appears to converge to a normal density ! 3 / 19



Bayesian asymptotics
Consider posterior of θ given observations y1, . . . , yn. Let θ̂n and
in(θ) denote the MLE and Fisher information based on y1, . . . , yn.

Under appropriate regularity conditions, as n→∞,

sup
A
|P(in(θ̂n)−1/2(θ − θ̂n) ∈ A|y1, . . . , yn)− P(Z ∈ A)| → 0

where Z ∼ N(0, I ).

That is, posterior distribution of in(θ̂n)−1/2(θ − θ̂n) converges in
total variation distance (and hence in distribution) to the standard
normal distribution. Note: given y1, . . . , yn, θ̂n is fixed !

Standard frequentist theory gives in(θ̂)−1/2(θ̂n − θ) converges in
distribution to a standard normal distribution but in this case θ
represents fixed ‘true’ value while randomness of θ̂n due to
sampling variation.
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REML as marginal likelihood

Bayesian derivation of REML.

Consider linear mixed model Y ∼ N(Xβ,V (ψ)).

Assume improper prior p(β|ψ) ∝ 1.

Then REML is obtained by integrating out β in ‘joint density’ of
(Y , β):

REML = f (y ;ψ) =

∫
f (y |β, ψ)p(β|ψ)dβ
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To show this we first compute f (y ;ψ) and compare it with REML.

Let V (ψ) = LLT and Ỹ = L−1Y . Then Ỹ |β ∼ N(X̃β, I ) where
X̃ = L−1X . Moreover (applying Pythagoras),

f (ỹ |ψ) =

∫
f (ỹ |β, ψ)dβ = (2π)(p−n)/2|X̃TX̃ |−1/2 exp(−1

2
‖Ỹ−X̃ β̂‖2)

where β̂ is the MLE. Thus (using the transformation theorem)

f (y |ψ) =

(2π)(p−n)/2

|V (ψ)|1/2|XTV−1(ψ)X |1/2
exp[−1

2
Ỹ T(I − X̃ (X̃TX̃ )−1X̃T)Ỹ ]

Moreover,

Ỹ T(I−X̃ (X̃TX̃ )−1X̃T)Ỹ = ‖Ỹ −X̃ β̂|2 = (Y −X β̂)TV−1(Y −X β̂)

(which may explain why REML can be short for “residual MLE”)
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REML is likelihood of ATY ∼ N(0,ATV (ψ)A). Let Ã = LTA.
Then ÃTX̃ = 0 and

Ã(ÃTÃ)−1ÃT = I − X̃ (X̃TX̃ )−1X̃T.

Thus

REML = |ATV (ψ)A|−1/2 exp[−1

2
Y TA(ATV (ψ)A)−1ATY ] =

|ATV (ψ)A|−1/2 exp[−1

2
Ỹ T(I − X̃ (X̃TX̃ )−1X̃T)Ỹ ]

We hence just need to show that

|ATV (ψ)A| = const|V (ψ)||XTV−1(ψ)X |
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This follows from

|ATA||XTX ||V | =

∣∣∣∣[ATA 0
0 XTX

]
V

∣∣∣∣ =

∣∣∣∣[AT

XT

] [
A X

]
V

∣∣∣∣ =∣∣∣∣[AT

XT

]
V
[
A X

]∣∣∣∣ =

∣∣∣∣[ATVA ATVX
XTVA XTVX

]∣∣∣∣ =

|ATVA||XTVX − XTVA(ATVA)−1ATVX | =

|ATVA||XTX (XTV−1X )−1XTX | = |ATVA||XTX |2|XTV−1X |−1

(recall for partitioned matrix B, |B| = |B11||B22 − B21B
−1
11 B12| and

A(ATVA)−1AT = V−1 − V−1X (XTV−1X )−1XTV−1)

Thus

|ATV (ψ)A| =
|ATA|
|XTX |

|V (ψ)||XTV−1(ψ)X |
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Pairwise difference prior
Suppose we observe Yi ∼ N(θi , 1), i = 1, . . . , n and we want to
infer θ1, . . . , θn. Prior information: θi and θi+1 “similar”.

Consider stationary AR(1) prior (τ21 = τ2/(1− a)):

f (θ; a) ∝ exp(− 1

τ21
θ21)

n∏
i=2

exp[− 1

2τ2
(θi − aθi−1]2)

Consider a→ 1. Then “limit” of right hand side is

f (θ) ∝ exp[− 1

2τ2

n∑
i=2

(θi − θi−1)2] = exp[− 1

2τ2
θTQθ]

for which

Q =


1 −1 0 . . .
−1 2 −1 . . .

...
...

...
...

. . . −1 2 −1

. . . 0 −1 1


Note Q1n = 0 so Q does not have full rank. 9 / 19



On the other hand Qx = 0 implies x = a1n for some a ∈ R. This
follows since Q = DTD where D is the n − 1× n matrix

D =


−1 1 0 . . .
0 −1 1 . . .
...

...
...

...
. . . 0 −1 1


Hence the null space NQ of Q is the span of 1n. Note 1n is the
last eigenvector of Q with eigenvalue 0.

f (θ) not a proper density on Rn since Q is not positive definite.

Limiting posterior may nevertheless still be proper (exercise).

f (θ) is invariant to addition of a constant to all elements of θ
(filters constants). Hence does not imply prior assumptions about
‘level’ of data Yi |θi ∼ N(θi , 1). Only need to choose prior
parameter τ2 (smoothness parameter).
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Prediction
Suppose we want to predict Y2 given Y1 where both depend on θ.

Frequentist approach: use f (y2|y1, θ̂) where θ̂ estimate based on
y1. This in general ignores extra uncertainty due to replacing θ by
an estimate.

Bayesian approach offers a systematic way to take into account
uncertainty of parameters in prediction by integrating out unknown
parameters:

f (y2|y1) =

∫
f (y2|y1, θ)p(θ|y1)dθ = Eθ|y1f (y2|y1, θ)

Predictive density is ‘weighted’ average of predictive densities
f (y2|y1, θ) where ‘weights’ given by posterior density p(θ|y1)
reflects uncertainty of θ.

Nice solution in principle but in practice the computation may not
be straightforward.
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Difficult posteriors

Except for the simple examples with conjugate priors the posterior
is often intractable - closed form expressions for posterior quantities
like expectations, variances, quantiles etc. often not available.
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Non-normal example: logistic regression with normal prior

β ∼ N(0, τ2)( normal prior )

Yj |β ∼ binomial(nj , pj) conditionally independent given β j = 1, . . . , nj

log(pj/(1− pj)) = ηj = xTj β

pj = exp(ηj)/(1 + exp(ηj))

Likelihood function:

f (y |β) =
∏
j

p
yj
j (1− pj)

1−yj =
∏
j

exp(xTj β)yj

(1 + exp(xTj β))nj

Marginal density f (y):∫
R
f (y |β)f (β; τ2)dβ =

∫
R

∏
j

exp(xTj β)yj

(1 + exp(xTj β))nj
exp(−β2/(2τ2))√

2πτ2
dβ

Integral can not be evaluated in closed form.
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Laplace/Gaussian approximation
Let g(β) = log(f (y |β)f (β)) and choose β̂ so g ′(β̂) = 0
(β̂ = arg max g(β)).

Note: β̂ is MAP (maximum a posteriori) estimate. Not MLE.

Taylor expansion around β̂:

g(β) ≈ g̃(β) =

g(β̂)+(β−β̂)g ′(β̂)+
1

2
(β−β̂)2g ′′(β̂) = g(β̂)−1

2
(β−β̂)2

(
−g ′′(β̂)

)
I.e. exp(g̃(β)) proportional to normal density N

(
µLP , σ

2
LP

)
,

µLP = β̂ σ2LP = −1/g ′′(β̂).

Since
p(β|y) ≈ exp(g(β)) ≈ exp(g̃(β))

it follows
β|Y = y ≈ N(β̂,−1/g ′′(β̂))
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Regarding marginal density of y :

f (y) =

∫
R

exp(g(β))dβ ≈
∫
R

exp(g̃(β))dβ

= exp(g(β̂))

∫
R

exp
(
− 1

2σ2LP
(β − µLP)2

)
dβ = exp(g(β̂))

√
2πσ2LP

Note: these kinds of arguments basis of asymptotic results for
posterior distributions.
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Other approaches

Numerical integration (Gaussian quadrature), Monte Carlo,
importance sampling, Markov chain Monte Carlo,....

Enough material for a whole course.
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Why/when is Bayesian inference useful

I obvious if prior information is available

I for highly complex models maximum likelihood inference is
difficult (multimodality, evaluation of likelihood).
Computation of posterior expectations and probabilities
numerically more simple.

I can compute posterior distributions of complicated parameters
whose distribution may be hard to obtain in the MLE setting.

I natural approach to take into account parameter uncertainty
in prediction.
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Exercises

1. (hidden AR(1) model) assume that Yi given θ are
independent N(θi , 1) and that θ = (θ1, . . . , θn) follows a
stationary AR(1) process prior with known autoregression
parameter a and noise variance τ2.

1.1 Compute the posterior distribution of θ (e.g. use the previous
results for conditional distributions in general linear mixed
models).

1.2 What is the limiting posterior when a→ 1 ?
1.3 is the limiting prior proper ? is the limiting posterior proper ?
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2. Consider data X1, . . . ,Xn from a zero-mean AR(1) process.
Consider the conditional likelihood of X2, . . . ,Xn given
(X1, a, τ

2).

2.1 Show that the posterior distribution of (a, τ 2) obtained by
combining the conditional likelihood with the (improper) prior
p(a, τ 2) ∝ 1/τ 2 is equivalent to the posterior for a linear
normal model with observation vector (X2, . . . ,Xn)T and
design matrix given by the column (X1, . . . ,Xn−1)T.

2.2 use the previous results to compute the predictive mean and
variance of Xn+1 given X1, . . . ,Xn (again using the conditional
likelihood instead of the usual likelihood of (X1, . . . ,Xn)).

NB: rather than using the conditional likelihood we could
instead assume X1 ∼ N(µ1, 1) and use the usual likelihood of
(X1, . . . ,Xn) given (µ1, a, τ

2) combined with the prior
p(µ1, a, τ

2) ∝ 1/τ2. This would give the same posterior
inference for (a, τ2) as by using the conditional likelihood.
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