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Today: selected topics in Bayesian statistics.

Asymptotics, REML, improper Gaussian
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Influence of number of observations/convergence of
posterior - binomial-beta
Beta-prior (aw = 1.5 8 = 3). Observations x = n/2,
n=2,6,12,24. Posterior mode 0.33, 0.41, 0.44, 0.47.

Note: posterior appears to converge to a normal density ! 3/19



Bayesian asymptotics

Consider posterior of 6 given observations yi,...,y,. Let 6, and
in(0) denote the MLE and Fisher information based on yi, ..., yn.

Under appropriate regularity conditions, as n — oo,
sup |P(in(0,)"Y2(0 — 0,) € Aly1, ..., ya) — P(Z € A)] = 0
A
where Z ~ N(0, /).

That is, posterior distribution of i,(#,)~/2(0 — ,,) converges in
total variation distance (and hence in distribution) to the standard

A

normal distribution. Note: given yi,...,y,, 0, is fixed !

Standard frequentist theory gives i,(0)~1/2(6, — 0) converges in
distribution to a standard normal distribution but in this case 6
represents fixed ‘true’ value while randomness of 0, due to
sampling variation.
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REML as marginal likelihood

Bayesian derivation of REML.
Consider linear mixed model Y ~ N(Xg3, V(v)).
Assume improper prior p(3]1)) o 1.

Then REML is obtained by integrating out 3 in ‘joint density’ of
(Y, B):
RENL — (y; ) = [ Fly|8. w)p(51v)d5
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To show this we first compute f(y; ) and compare it with REML.

Let V(¢)) = LLT and Y = L=1Y. Then Y|8 ~ N(X3, 1) where
X = L~1X. Moreover (applying Pythagoras),

. . )21 ST o — Lo on
F(7lv) = / F(718,)dB = (2m) P~ 2IXTX| 72 exp(—5 | V=X B %)
where BA is the MLE. Thus (using the transformation theorem)

fy[y) =
(277)(/3—'7)/2
[V(@)[H2XTV () X[/

exp[— YT(I X(XTX)1XT)Y]
Moreover,
YT(I=X(XTX) XY = |V =XBP = (Y =XB)TV (Y - X})

(which may explain why REML can be short for “residual MLE")
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REMLNis Ukelihood of ATY ~ N(O,AT V(¢)A). Let A=ILTA
Then ATX =0 and

AATA AT = 1 — X(XTX)1XT.
Thus
1
REML = |AT V() A|7Y/? exp[—iYTA(AT V()A)tATY] =
_ 1 T o1 ST
ATV ()A|71/? exp[—> YT = X(XTX)1XT)Y]
We hence just need to show that

[ATV(9)A] = const| V()| [XT V()X
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This follows from

ATA 0 AT
IATAIIXTX||V| = H 0 XTX} v’ = HXT] A X] v’ =
AT ATVA  ATVX
] via |- s

|ATVA|IXTVX — XTVA(ATVA)1AT VX | =
IATVA| I XTX(XTVIX)IXTX| = [ATVAIXT X2 XTv=ix)—t

(recall for partitioned matrix B, |B| = |B11|| B2 — BngﬁlBlz| and
AATVA)TTAT = v — v=IX(XTV-IX)IXxTy 1)

Thus ATA
ATVA = S VIXTY L 0)X]
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Pairwise difference prior
Suppose we observe Y; ~ N(60;,1), i =1,...,n and we want to
infer 01, ...,60,. Prior information: 6; and 0; 1 “similar”.

Consider stationary AR(l) prior (72 = 72/(1 — a)):

£(9; a) oc exp( —12 Hexp[—— —af;_1]%)

Consider a — 1. Then “limit” of rlght hand side is

f(0) x exp[——2 Z —0;_1 ] = exp[——HTQQ]
for which ~ ~
1 -1 0
-1 2 -1
Q= ;
-1 2 -1
i 0 -1 1]

Note Q1, = 0 so Q does not have full rank. o/10



On the other hand @x = 0 implies x = al,, for some a € R. This
follows since @ = DT D where D is the n — 1 x n matrix

Hence the null space Ng of Q is the span of 1,. Note 1, is the
last eigenvector of Q with eigenvalue 0.

f(#) not a proper density on R” since Q is not positive definite.
Limiting posterior may nevertheless still be proper (exercise).

f(0) is invariant to addition of a constant to all elements of ¢
(filters constants). Hence does not imply prior assumptions about

‘level’ of data Y;|0; ~ N(6;,1). Only need to choose prior
parameter 72 (smoothness parameter).
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Prediction
Suppose we want to predict Y> given Y; where both depend on 6.

Frequentist approach: use f(yz\yl,é) where 6 estimate based on
yi. This in general ignores extra uncertainty due to replacing 6 by
an estimate.

Bayesian approach offers a systematic way to take into account
uncertainty of parameters in prediction by integrating out unknown
parameters:

Flyalyr) = / F(yalys, 0)p(6]y1)d0 = Egy, F(yaly1.0)

Predictive density is ‘weighted’ average of predictive densities
f(y2|y1,0) where ‘weights’ given by posterior density p(6|y1)
reflects uncertainty of 6.

Nice solution in principle but in practice the computation may not

be straightforward.
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Difficult posteriors

Except for the simple examples with conjugate priors the posterior
is often intractable - closed form expressions for posterior quantities
like expectations, variances, quantiles etc. often not available.
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Non-normal example: logistic regression with normal prior

B ~ N(0,72)( normal prior )

Y| ~ binomial(nj, p;) conditionally independent given 3 j=1,...,n;
log(pj/(1 = pj)) = nj = x' 3

pi = exp(n;)/(1 + exp(n;))

Likelihood function:

T Ny exp(x/ )
fy1B) = IJ_IPJ- (L—=p) ™" = 1:[ L+ op(T B
Marginal density f(y):

L B exp(x B)Y exp(—£2/(2712))
/Rf(y’ﬁ)f(ﬁ” )dﬁ/le_I (1+eXPJ(XJ-Tﬁ))"j Vo

Integral can not be evaluated in closed form.
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Laplace/Gaussian approximation

Let g(B) = log(f(y|B)f(B)) and choose B so g'(p) =
(8 = argmaxg(p)).

Note: 3 is MAP (maximum a posteriori) estimate. Not MLE.

Taylor expansion around (:

g(8) ~ &(5) =

g(B
§()+(5-A)g' (B)+5(5-P)6"(8) = 8(A)~5(5-B) (~&"(D))
le. exp( (ﬂ)) proportional to normal density N (uip,07p),
pp =B oip =—1/g"(B).

Since
P(Bly) =~ exp(g(B)) ~ exp(&(5))
it follows
BlY =y~ N(B,~1/g"(5))
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Regarding marginal density of y:

- st et

— exp(e(5) | e (= 52 (5~ pue))d5 = ex(e() 2o

LP

Note: these kinds of arguments basis of asymptotic results for
posterior distributions.
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Other approaches

Numerical integration (Gaussian quadrature), Monte Carlo,
importance sampling, Markov chain Monte Carlo,....

Enough material for a whole course.
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Why /when is Bayesian inference useful

» obvious if prior information is available

» for highly complex models maximum likelihood inference is
difficult (multimodality, evaluation of likelihood).
Computation of posterior expectations and probabilities
numerically more simple.

» can compute posterior distributions of complicated parameters
whose distribution may be hard to obtain in the MLE setting.

P natural approach to take into account parameter uncertainty
in prediction.
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Exercises

1. (hidden AR(1) model) assume that Y; given 6 are
independent N(6;,1) and that 6 = (61,...,6,) follows a
stationary AR(1) process prior with known autoregression
parameter a and noise variance 7.

1.1 Compute the posterior distribution of # (e.g. use the previous
results for conditional distributions in general linear mixed
models).

1.2 What is the limiting posterior when a — 1 ?

1.3 is the limiting prior proper 7 is the limiting posterior proper ?
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2. Consider data Xi, ..., X, from a zero-mean AR(1) process.
Consider the conditional likelihood of Xa, ..., X, given
(X17 a, 7—2)‘

21

2.2

NB:

Show that the posterior distribution of (a,72) obtained by
combining the conditional likelihood with the (improper) prior
p(a, 72) o< 1/72 is equivalent to the posterior for a linear
normal model with observation vector (Xa,...,X,)" and
design matrix given by the column (Xi,...,X,_1)".

use the previous results to compute the predictive mean and
variance of X,11 given Xi,..., X, (again using the conditional
likelihood instead of the usual likelihood of (Xi,...,X,)).

rather than using the conditional likelihood we could

instead assume Xj ~ N(u1,1) and use the usual likelihood of

(X4, ...

, Xn) given (u1,a,72) combined with the prior

p(u1,a,7%) o< 1/72. This would give the same posterior
inference for (a,72) as by using the conditional likelihood.
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