A Short Course on Bayesian Inference (based on
An Introduction to Bayesian Analysis: Theory and Methods
by Ghosh, Delampady and Samanta)
Module 2

1 Large Sample Methods in Bayesian Inference

In order to make Bayesian inference about a parameter 6 with model f(x|6), one needs
to choose an appropriate prior 7(6) for . Exact or approximate computation of var-
ious features of the posterior m(f|x) is a major challenge for Bayesians. Under some
regularity conditions, the posterior can be approximated by a normal distribution with
the MLE as the mean (or mode), and inverse of the Fisher information matrix as the
posterior variance-covariance matrix. If more accuracy is needed, one may have to go
for an asymptotic expansion of the posterior. Alternatively, one may sample from the
approximated posterior (or some type of t—distribution) and use importance sampling.
An intuitive rationale behind posterior normality is given below.

How the posterior inference is influenced by a particular prior depends on the relative
magnitude of the amount of information in the data, which for iid observations can be
measured by the sample size n or nI(0) (1(0) being the per unit Fisher information) or
observed Fisher information
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0 being the MLE of 6. As the sample size grows, the influence of the prior diminishes.
Thus, for large samples, a precise formulation of the prior is not necessary. In most
instances when the parameter space is low-dimensional, the prior is washed away by the
data. Another important asymptotic fact is consistency of the posterior which we now
describe below. In general, the limiting results to be discussed provide a frequentist
validation of Bayesian analysis.

Consistency of Posterior Distribution:

Suppose a data sequence Xi,...,X,,... is generated as iid with a common density
f(z|6p). Would a Bayesian analyzing this data with a prior 7(f) be able to learn about
0y? Ideally, the updated knowledge about 6 represented by its posterior should become
more and more concentrated near 0y as the sample size increases. This asymptotic prop-
erty is known as the consistency of the posterior distribution at 6. Let Xi,..., X, be



iid with joint pdf f(x,]0),0 € © C RP. Let () denote the prior pdf and 7(0|X,,) the
posterior pdf. Let II(:| X ,,) denote the corresponding posterior distribution of 6.

Definition 1. The sequence of posterior distributions I1(:|X,,) of 6 is said to be con-
sistent at 6 = 6 € © if for every neighborhood U of 0y, II(U|X,,) — 1 as n — oo with
probability 1 wrt to the distribution (of X,,) under 6.

From the definition of convergence in distribution, it follows that consistency of
II(-| X ;) at 6y is equivalent to the fact that II(-| X)) < a distribution degenerate at
0y with probability 1 under 6.

Example 1. Let X7, ..., X, beiid Bernoulli observations with P»(X; = 1) = 6. Consider
a Beta(a, () prior density for #. The posterior density of 6 given X;,..., X, is then a
Beta(d ", X; +a,n— > X; + () distribution with

nX, + « (nX, +a)(n —nX, + )
E(01X,) = 22272 varglX,) = .
(61X n+a+f O1X.) (n+a+p)2n+a+pB+1)
_a.S. (Py,) a.8. (Pyg)
Note that X,, — " 6y asn — oo by strong law of large numbers. Hence E(0|X,)) —
a.s. (Py,)

6o, Var(0|X,) — " 0. Then,

P{O ¢ [0y — .00+ €| X} = P(|0 — 6y > | X,,)
E[(0 = 60)*| X ] _ Var(0]X,) + {E(0]X) — 0o}
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€2 €
a.S. (Psy)
— 0 as n — oo.
An important consequence of the consistency of the posterior is the robustness of Bayesian
inference with respect to the choice of prior. Let X1, ..., X, be iid and m; and 7 be two
prior pdf’s positive and continuous at 6y, an interior point of © such that IT;(-| X ,,) and
II,(-| X ,,) are both consistent at #y. Then with probability 1 under 6y,

/ I71(0] X ) — m2(0]X,)|d6O — O
(C)

or equivalently, sup 4 |II; (A| X,,) —II5(A| X )| — 0 as n — oo. Thus two different choices
of prior density lead approximately to the same posterior distribution.

Asymptotic Normality of the Posterior

Large sample Bayesian methods are primarily based on normal approximation to the
posterior distribution of 6. As the sample size n increases, the posterior distribution
approaches normality under certain regularity conditions and concentrates in the neigh-
borhood of the posterior mode. Suppose 6, is the posterior mode and the first-order
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partial derivatives of log w(| X ,,) vanish at 6,,. Define

P _ Plogm(0]X,)
" 00007

Then a formal Taylor expansion gives

0 =6,.

' ~ 1 ~ 8210 m QXn N n
logm(6]X,) = logm(8X.,) — 5(6 —6.)[- gea(eT‘ | -

~ 1 ~ ~ ~
- log 7T(9|Xn) - 5(0 - Hn)TIn(e - en)

Hence
R(01X,) = 701X expl5 (0~ 0,)71,(6  5,)
o exp[—5 (6~ ) 1,0 — 6],

which is the kernel of a N,(6]6,, I ') density (with p being the dimension of ).

As the posterior density becomes highly concentrated in a neighborhood of the pos-
terior mode where the prior m(f) is nearly constant (this is true for a diffuse prior), the
posterior is essentially the same as the likelihood f (X ,|0). Then we may replace, to the
first order of approximation, 6, by 0, and I, by I,, where 6, is the maximum likelihood
estimator (MLE) of 6.

Remark 1. From the above discussion it follows that for iid Xi,..., X,|0, we have
several ways to approximate the posterior density either by N,(f,, 1) or N,(6,,1;")
or N,(0,,17'(6,)), where I(f) is the total Fisher information in X,. In particular,
under suitable regularity conditions, I,/ (0 — 6, given X, converges to N,(0,1,) with
probability 1 (Fy). This is comparable with the classical statistical theory where Ly (60—
6,6 % N,(0,I,).

A Formal Result on Asymptotic Normality of the Posterior Distribution

Let Xi, ..., X,|0 be iid with a cdf F'(x|6) and a pdf f(x|0). For simplicity, let § be a scalar
with 8 € © an open subset of R. Fix 0y € O, the “true” value of 8, and all probability
statements will be made under Fy,. Let [(0,z) = log f(z]0), L,(8) = >"1, (6, X;) and
h() a generic notation for the ith derivative of a function h(X,#) with respect to 6. The
function A(-) may not involve X explicitly. Assume the following regularity conditions.

I. The set {x : f(x]f) > 0} is the same for all # € ©, i.e., the support does not depend
on the parameter.

II. The function [(#,z) is thrice differentiable with respect to ¢ in a neighborhood
(0o — 6,00 + 6) of Oy and supge (g, —s.0,+5) 19)(0, 2)| < M (z) with Eg,[M(X,)] < oo
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L Ep, [V (6y, X)] = 0,0 < Eg, [P (09, X)] = Ep, [V (6, X)]? < 00 .

IV. For any § > 0, supj_g =57 ' [Ln(0) — Ln(6)] < —¢ for some € > 0 and all n
sufficiently large.

Remark 2. Suppose there exists a sequence of estimators {0} of 6 such that 6% — 6,
with probability 1 (FPy,). Then there exists a solution 6, of the likelihood equation
LS)(H) = 0, i.e., there exists a sequence 0, of statistics such that with probability 1

. ~a.s. (P
(Pyy), L;l)(en) = 0 for sufficiently large n and 6, > (o) .

Theorem 1. Suppose assumptions (I)-(IV) hold and 6, is a strongly consistent solution
of the likelihood equations. Then for any prior density 7(6) which is continuous and
positive at 6,
1(6o)
Tim !ﬂ (| X5) — N
with Py, —probability one, where 7*(¢|X,) is the posterior density of T,, = /n(f —
én) giv;ar)l X,,. Also, under the same assumptions, (1) holds with I(6,) replaced by
—n LY (6,).

VA =00 gt = (1)

Proof. Recall that the posterior density of 8, m, (0| X ,,)
L,(0,)]7(0). Hence, the posterior pdf of T,, = /n(6 —

[ILi=y f(Xi]0)]m(0) o< exp[ L (6)—
) s given by

X
0
(81X ) = Oy exp[L (B + 17 2t) — Lo(0,)]m(0, + n”5t), (2)
where C,, = [, exp[ Ly (0, + n"2t) — Ly (6,)]7 (6, + n~2t)dt. Let
A~ 1 A A 1 1
gn(t) = exp[L, (0, + n"2t) — L,(0,)]7 (0, + n~2t) — exp[—§t2](6’0)]7r(00). (3)

Suppose we show that [}, |g.(t)|dt — 0 asn — oo. Then C,, — [, m(6p) exp(—51(6o))dt =
7(0)(27)/2I7Y/2(6,). Then the integral in (1) is dominated by

c,! /R |9 (£)|dt + /R C, M(6o) exp[_%t2](90)] — N ([0, 17"(0))|dt — 0.

In order to prove that [, |g,(t)|dt — 0, we write R = A;UA,, where Ay = {t : [t| > doy/n}
and Ay = AS. First,

A _1 A _1 A 1 2
[ lon(o)d < /A m(OutnE ) explLa(BotnH0)~Lo(B,)ldt+ /A (8o) expl— 5T (60t
(4)



Now

1 1
/ 7(6y) exp|—=t*1(0y)]dt = ﬂ(@o)/ exp[—=t*1(f)]dt — 0 as n — oco. (5)
A 2 1>d0v/ 2

Moreover, since by (IV) for t € Ay, n™Y|Ly (0, +n"2t) — L,(6,)| < —e for all sufficiently
large n,

First term in (4) < exp(—ne)/ 76, + n_%t)dt — 0 asn — oo. (6)
Aq
Combine (5) and (6) to get (4).
Next to prove fA2 |gn(t)|dt — 0 as n — oo, first by Taylor expansion, and L,(ll)(én) =
0,

R ) R 2 .
Lu(B+173) = Lu(B) = —5 Lo + Ra(t), (7)
where R, (t) = (1/6)(t/\/n)3LE (0., 160 — 6,| < |t|/v/n. Now by assumption (II), for

a.s. (Py,) a.S. (Py,) .
eachreal t, R,(t) — " 0asn — o0o. So, ¢g,(t) — 0. Next for suitably chosen dy,

for any t € A,,
1o, % Loz
IR, (t)] < 6(5015 n ;:1 M(X;) < Zt I, a.s.(Py,)

for sufficiently large n so that from (7),

. A 1. t?
eXp[Ln(Hn + n_%t) - Ln(en)} < exp(_zt2]n> < exp[—§](90)],

a.s. for large n. Hence, for a suitably chosen dy > 0, |g,(¢)| is dominated by an integrable
function on A,. Applying the dominated convergence theorem, [, [gn(t)ldt — 0 as
n — oo.

Remark 3. We assume in the proof that w(0) is a proper pdf. However, the result
continues to hold even for improper prior m(#) provided there exists ny such that the
“posterior” m(0| Xy, ..., X,,) is proper a.e.

We next show that if 02 = [, 0m,(0|X,)d6 is finite, then \/n(6F — §,) — 0 with
probability 1 (Py,) as n — oo under some conditions.

Theorem 2. Suppose in addition to (I)-(IV), [07(0)df < co. Then

/ It||7* (¢| X ) — N(t|0, I7(6g))|dt — O with probability 1(Py,).
R



Remark 4. The above result implies that

/tWZ(ﬂXn)dt—>/tN(t|0,I‘1(00))dt:0,
R R

Hence, 02 = E(0|X,) = E[f, + \/LH\XR] = 6, + E[\/Lﬁ\Xn] Hence, /n(62 —6,) =
Jptmi(t| X ,)dt — 0 as n — oo.

Laplace Approximation

Bayesian analysis requires evaluation of integrals of the form [ ¢(0)f(x|0)m(0)df. For
example, when ¢(f) = 1, the integral reduces to the marginal likelihood of X. The
posterior mean requires evaluation of two integrals [ 0 f(x|0)m(0)df and [ f(x|0)m(0)d6.
Laplace’s method is a technique for approximating integrals when the integrand has a
sharp maximum in the interior of the domain of integration.

Laplaces’s method

Consider an integral of the form I = [ ¢(0) exp[nu(6)]df where ¢ and u are smooth
functions of 6 with u having a unique maximum at 0. In applications, nu(f) =31 1(X;,0),
the log-likelihood function or the logarithm of the unnormalized posterior density f(x|6)7(6)
with corresponding 0 equal to the posterior mode. The idea is that if v has a unique
sharp maximum at 0, the most contribution to the integral I comes from the integral
over a small neighborhood (6 — 8,0 + ) of 6. We study the behavior of I as n — co. As

n — 0o,

646
I~T = /0 a0 espinu(0)}a.

Laplace’s method involves Taylor series expansion of ¢ and u about 0 which gives

6+6
. 1 . .
I =~ / [q(0) + (0 —0)q'(0) + 5(9 —6)%¢"(0) + smaller terms]
-6
, . ~on

x explnu(f) + nu'(0)(0 — 0) + 51/’(@)(0 — 0)? + smaller terms]dd
~ ) ) o+o q’(é) ) 1 ) 2q”(é) Ly Y
~ explnu(f)]q(0) /é_5 1+ 40 (0 —6)+ 2(9 9) 0 ]exp[Qu (0)(0 — 0)%]dd

Assume that ¢ = —u”(f) > 0 (e.g., when u(f) = n~'log f(2]0)) and letting t = /nc(d —



o L VI ) ),
I =~ exp[nu(&)]q(&)—nc/_ém[l + Ve q(6) +5— 0 ]exp(—g)dt

R 1 oo " q/<é) 2 q//(é) 2

R 1 ~ ~ ——
explO@) s [ 1 g4 S e

A1 V2T q"(6 1 V2T _

= eplm@lah) Y21+ 10 = el V1 -+ 007
In general, for the case with a p—dimensional parameter vector 6,
- (2m)P/?

D>

)a(9) [AL0)] 721+ O(n7Y),

I = exp[nu( o

where A, (0) = (—%>pxp :

The Bayesian Information Criterion (BIC)

Consider a model with a likelihood f(x|€) and prior (). Letting ¢(#) = n(¢) and
nu(0) = >0 1(X;,0), the log-likelihood, one can find an approximation to the marginal
[ f(x]|0)7(0)dl. This approximation is

(Qﬂ)p/ 2
nP/Z

exp[y_1(X:, O)x(0)> 1A (O] 72 [1 + O 7).

Its logarithm simplifies to

ZZ(XZ-, 0) + log w(0) + glog(%r) — %log 1AL (0)] — glogn +log[l + O(n™)].

i=1

Ignoring all the terms which stay bounded as n — oo, we get

BIC =Y I(X.,0) - glogn.
=1

Laplace Approximation and Posterior Normality

Let X1, ..., X,|0 be iid with common pdf f(x|f). Also, let § denote the MLE of 6. Write
T, = /n(0 — 0). Let 7(0) denote the prior pdf, 7(A|X,) the posterior pdf and II(-| X,,)
the posterior distribution. Then for a > 0, I(—a < T, < a|X,) = II(d — <<
0+ \/Lﬁ|Xn) = Jn/1,, where

0+-%
T, = /é_f explnu(0)|x(6)do, I, = / explnu(6)]7(6)do,

vn
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with u(6) = n~' 321 log f(X;]6). By the Laplace approximation, I,, ~ exp[nu(8)]r(6)
¢ = —u"(), the observed Fisher information per unit observation.
Next by the Laplace method,

Jo ~ exp[nu()] / 7(0) 4 (0 — 0)7'(0) + smaller terms] exp| %(9 — 0)?)de
U
N .
~ explnu(f)]r(d) / " expl= 20 — 0))do
R 2
NG
i 12 [° ct?
= explnu(f)|r(0)n exp(——)dt
Thus, for a > 0,
\/E a Ct2
[I(—a < T, <alX,) = ——)dt
(ca<T<aX,) ~ 3£ [ ewn-5)
= P(~a< Z<a), Z~N(0,c).
Tierney-Kadane-Kass Refinements
Suppose we are interested in finding
[ 9(0) f(x]0)m0)do
E™g0)|x] =
[9(0)|] (w\e) 0)d0
[ 9(0) exp[nu(6)]do )
[ exp[nu(9)]do ’

where nu(0) = log f(x|0) + log m(#). A simple first order approximation to this moment
is given by g(0)[1 + O(n™1)].

Suppose now g(f) > 0 for all # € ©. Let nu*(0) = nu(f) + log g(0) = nu(f) + G(6),
(say). Now apply Laplace method to both the numerator and the denominator of (8).
Let 6, denote the mode of u*(6),

0?u 0?u,
= aeaeT“’ ; and X' = ~ 56507 l0=0."
Tierney and Kadane (JASA, 1986) obtained the approximation

35172 explnu (8.)]
|=[1/2 explnu(d)]
We will give an informal proof of (9) when 6 is a real-valued parameter. To this end, let

w, = up(0), the kth derivative of u(6) evaluated at 6. Similarly, u = u.k(6y), the kth
derivative of u,(f) evaluated at 6,. Also, write

E[g(0)]x] = [1+0(n™). (9)

02 = —{up} !, and 02 = —{u.o} "
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Under the usual regularity conditions, o, o, ug, u., are all O(1). First get

/exp[nu(@)]d@ = /exp[nu(é) — 2%‘2(9 —0)% + R,(0)]d6

= exp[nu(@)]\/%ﬁ/exp[Rn(Q)]N(QW,?)dﬁ, (10)

where
R.(0) = nu(8) — nu(d) + %(9 —§)?
= RO =0 uy 50— )+ (0= 0 us + (0= ) ug+ . (11)
By Taylor expansion,
exp[Ra(0)] = 1+ {%(e — 0)3uy + %(0 — )by + %(0 — 0)us)

Leny G LV VTS e S R
+2{6(9 8) U3+24(9 9) U4} +6{6(9 0) U3} + ...

2 N6, ,2
_ N s M v, 10— 0)ug
= 1 (0= 0Pus + [ (0 = 0)'us + ——=—]

n(f — é)5u5 n?(0 — 9)7U3U4 n*(0 — é)9u§

O(n=?). (12
[ 120 144 1296 ) (n). (12)
On integration,
2 X 2
/ explRaOIN016, )0 = 1+ [ no— 8y N(9)d, )do
R n 24 Jr n
2 2
u3 2 76 5 9 -2
3 _ )N 7
tog Rn (0 —0)°N(0)0, - )do + O(n™*)
= M Ty s 4 o)
B 24 "' n 72 n
= 1+%+O(n_2), (13)
where a = go*uy + 2 0%u3. Hence,
/exp[nu(@)]d@ = exp[nu(0)]v QW%D + % +0(n?)]. (14)
Similarly,
/exp[nu*(e)]dﬁ = exp[nu*(é*)]\/Qﬂ;%[l + % +0(n™%)], (15)
where a, = gotu. + 2oluZ;. Hence,
i o N 1l +24+0(n?)
Ela0)le] = % esplon. (0~ mi(0) i
o as —a

+0(n™?). (16)

= —explnu.(8.) — nu(@)][1 + =

9



Next observe that

0=u1(6,) = u(0.)+n"'G6,)
~ uy(0) + (0, — O)ux(0) + n*G'(0) +n~ (0, — H)G"(6)
= (0. = 0)[uz(0) + n~'G" ()] + n~' G (D),

implying 0, — 0 = —{n"'G"(0)}/[u2(0) + n~'G"(0)] = O(n~"). Hence, since u.(0) =
uR(0) +n " Gr(), u(0,) — uk(0) = O(n1). So, a, —a = O(n~'). This leads to

E7g(0)|] = = explmu. (6.) = nu(@)][1 + O(n )] (17)

Asymptotic Expansion of the Posterior Distribution

Let F,(u) = P*[\/nlY?(0 — 6,) < u|X,] be the posterior distribution function of
\/ﬁf}/ 2(0 — én) given X,,. We showed earlier that under a prior m which is continu-
ous and positive at 6y,

lim sup |Fy,(u) — ®(u)| = 0 a.s. Py,

when 6 is the true value of the parameter, ®(u) being the standard normal cdf.
Johnson (1970) proved the following result refining the original results of Lindley:

k
sup [Fy(u) — ®(u) — ¢(u) Y n792;(u, X,)| < Myn~ 24D as. By,
u =

for some M; > 0 depending on k, where ¢(u) is the standard normal density and
¥;(u, X,) is a jth degree polynomial in u with coefficients bounded in X,. Ghosh,
Sinha and Joshi (1982) proved a stronger version of the result.

We now present an informal argument to obtain the expansion for k = 2 without the
formal rigor of Johnson (1970) or Ghosh et al. (1982).

Let t = v/n(0 — én) and a; = %dgg, o= 4,,1 > 1so that ay = —1I,. Then by Taylor

expansion,

7(0) = 7(0, +t/v/n) = 7(6,)[1 + —= + — |+ o(n™")

and

Lo(f + t//R) — Ln(fy) = thaz L 6¢_

Hence,
W(én + t/\/ﬁ) exp[Ly, (é + t/\/ﬁ) - Ln(én)]

= ﬂ(én) exp(az—ﬁ)(l + T + ) +o(n™h), (18)

2
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where

t
agzag(t;Xn)——a4+72 3+_7r(é) 6a Té)

Then
Co = [ 70+ /) explLa0n +1/3/) — LB

. 2 ay 5 a% 1 7"(0,) | a3 7(0,) -1
_ U S Tn) 88T 0m) G
m(6)y) L+ 53 2al 3w (0 * 502 W(@n)]+0(n ). (19)

Hence the posterior 7 of T}, is

Tt Xn) = erlﬂ'(én + t/ﬁ) exp|[Ly, (é + t/ﬁ) - Ln(én)]

— (2m) B2 exp(— It 2)[1+—71 +72]+o(n*1) (20)
n 2 \/_ bl
where .
t3 7' (0,)
= (t: X,) = o (t: X)) = —ag + t——22
T =1t ) = au( ) 6a3+ (6)
and

as 5 a3 1 7"(6,) _ag (0,
8a2 ' 2443 ' 2ay 7(0,) 203 n(0,)
Let S, = I./°T), = \/ﬁf}lﬂ(ﬁ — én) Then the posterior density of S,, is given by

Yo = 72(2(:’ Xn) = a2(t7Xn) -

1 (6,
ma(s1X0) = ()1 + %{5;5/2 + = ((é ;}
1 oags  a3s” L5 7 (6,) N azs* 7 (6,)

n'oafz 723 2, w(é) 612 w(6,)
o S0 1m0 os WOy oy (g

812 243 2I, n(b,) 212 7(,)

The expansion given in (21) will be useful later in deriving probability matching priors.
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