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▶ Bayesian analysis for AR(1)

▶ Cucumber data: use random effects or not ?

▶ Mixed models and randomized trials: evaluation of new
mathematics teaching method in primary school

▶ Mixed models with correlated errors



Estimation for AR(1)

Likelihood for zero-mean stationary AR(1) (|a| < 1):
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Often conditional likelihood given X1 used instead:
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with Y := (X2, . . . ,Xn+1)
T and X := (X1, . . . ,Xn)
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Then we immediately get (least squares)

â =
XTY

XTX
=

∑n+1
i=2 XiXi−1∑n

i=1 X
2
i

τ̂2 =
∥Y − Xâ∥2
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Estimation easy - but what is distribution of â ?



Recall
Xi = aXi−1 + νi

where νi iid N(0, τ2) (in fact, normality not needed).

Then
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The sequence νiXi−1, i = 2, 3, . . . is a so-called martingale
difference sequence for which CLT exists:

n−1/2
n+1∑
i=2

νiXi−1 → N(0,Var(ν2X1))

in distribution. Note Var(ν2X1)) = τ2VarX1



By weak law of large numbers (for weakly correlated sequence)

n−1
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X 2
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in probability.

In conclusion,

√
n(â− a) → N(0, τ2/Var(X1)) = N(0, 1− a2)

This result does not rely on normality of νi s but quite technical
(martingale CLT for correlated sequence, law of large numbers,
Slutsky’s theorem).



Bayesian approach
Assume X1 ∼ N(µ1, 1) and AR(1) specification for rest of Xi ’s.

Use prior p(a, τ2, µ1) ∝ 1
τ2
p(µ1). Then posterior is

p(a, τ2, µ1|X1, . . . ,Xn) ∝ L(a, τ2|X1)
1
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We focus on (a, τ2) (not interested in µ1 here):
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Note, conditional on (X1, . . . ,Xn) this is exactly equivalent to the
posterior for a normal linear model with data vector Y and design
matrix X. Hence by our Bayesian derivation (Bayes 1, slide 14) for
linear normal model, we immediately get that

a|X1, . . . ,Xn, τ
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)
Note similarity with frequentist result ! However, no need of CLT
or stationarity. On the other hand, normality is needed.



Cucumbers and random effects

For the cucumbers data example we initially include random plot,
section and block effects to account for variations in soil,
temperature, light etc. across greenhouse.

However, not much evidence for positive variances for these
random effects ?

Should we remove random effects ? Pros and cons:

▶ if there is indeed random variation associated with plots,
sections or blocks (other than noise) then we get invalid
F -tests if just using ordinary linear model.

▶ if we keep random effects but there is actually no random
variation for plots, sections and blocks we use an overly
complex model and may loose power when investigating fixed
effects of climate, variety and fertilizer
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Power calculations (simulation study)
Suppose we want to assess effects of fixed effects climate, variety
and fertilizer.

Suppose variance components for plot, section and block are all
zero but we still include plot, section and block as random effects
along with fixed main effects (not zero) of climate, fertilizer, and
variety.

Power (probability of rejecting null hypothesis of no main effects)
at the 5% significance level:

Model Climate Fert Variety

Mixed : 0.84 0.68 0.82
Linear (only fixed): 0.39 0.60 0.80

Considerably lower power for Climate with mixed model. F -test
uses denominator λ̃BxC which incorporates σ2, σ2

BxCxF , σ
2
BxC and

has fewer denominater degrees of freedom than for linear model.
Variety is in “noise” stratum so not much difference between
mixed and linear model (λI = σ2).



Type I error (simulation study)

Suppose instead that there is indeed random variation for plot,
section and block but no fixed effects of climate, fertilizer, and
variety.

Type I error (probability of rejecting at 5% level):

Model Climate Fert Variety

Mixed : 0.05 0.05 0.05
Linear (only fixed): 0.28 0.08 0.004

Correct significance level for mixed model (as guaranteed by
theory). No control of type I error rate for wrong linear model
without random effects.

Too large residual variance estimate for linear model without
random effects.
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Block random or fixed ?

Block only has three levels. Not much room for estimating the
associated variance.

However, for testing fixed effects of climate, fertilizer and variety it
does not matter whether block is included as random or fixed.



Cucumber data

For cucumber data p-values and conclusions for main effects are
similar for models with and without random effects.

In practice choice of random effects should be guided by knowledge
about the specific experiment conducted (I am not fan of deciding
by testing hypotheses - this leads to issues with multiple testing).



TRACK (Teaching Routines and Content Knowledge)
project

123 Danish primary schools randomized into treatment and control
group.

Treatment: new mathematics teaching method inspired by
Singaporean practice.

Follow pupils over three years starting with 4th grade.

Data available now: mathematics test result at beginning of study
(baseline).

My colleagues from Aarhus wanted to test adequate randomization
by assessing treatment effect at baseline.

Is this a good idea ?



OLS

They used ordinary least squares (OLS) but with adjusted standard
errors taking into account correlation between schools and classes.

β̂ = (XTX )−1XTY Varβ̂ = (XTX )−1XTVX (XTX )−1

Plug-in empirical estimate of V .

Note: this is not BLUE !

They found slightly significant negative treatment effect !! (p
slightly less than 5%)

Conclusion ??



Mixed models analysis

I used linear mixed models.

School and class random effects.

In this case

β̂ = (XTV−1X )−1XTV−1Y Varβ̂ = (XTV−1X )−1

Is this BLUE ?

Possible disadvantage of mixed model analysis ?



Mixed models analysis

I used linear mixed models.

School and class random effects.

In this case

β̂ = (XTV−1X )−1XTV−1Y Varβ̂ = (XTV−1X )−1

Is this BLUE ?

Possible disadvantage of mixed model analysis ?



Results regarding fraction (brøk-regning) test results

Estimates of treatment effects and p-values:

OLS OLS p-value permutation p-value
-2.39 0 0.014

Mixed (BLUE) approx t p-value permutation
-1.34 0.151 0.145

Permutation: randomly permute schools into treatment and
control and assess treatment effect for each permuted data set.
Under null-hypothesis, data should come from this permutation
distribution.


