Mixed model analysis case studies

Rasmus Waagepetersen

April 24, 2023

Mixed model analysis of randomized studies:

- evaluation of new mathematics teaching method in primary school
- comparison of whole grain vs. refined grain diets

TRACK (Teaching Routines and Content Knowledge) project

123 Danish primary schools randomized into treatment and control group.

Treatment: new mathematics teaching method inspired by Singaporean practice.

Follow pupils over three years starting with 4th grade.
Data available now: mathematics test result at beginning of study (baseline).

My colleagues from Aarhus wanted to test adequate randomization by assessing treatment effect at baseline.

Is this a good idea?

OLS

They used ordinary least squares (OLS) but with adjusted standard errors taking into account correlation between schools and classes.

$$
\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} Y \quad \mathbb{V a r} \hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} V X\left(X^{\top} X\right)^{-1}
$$

Plug-in empirical estimate of V.
Note: this is not BLUE!

They found slightly significant negative treatment effect !! (p slightly less than 5\%)

Conclusion ??

Mixed models analysis

I used linear mixed models with school and class random effects.
In this case

$$
\hat{\beta}=\left(X^{\top} V^{-1} X\right)^{-1} X^{\top} V^{-1} Y \quad \mathbb{V a r} \hat{\beta}=\left(X^{\top} V^{-1} X\right)^{-1}
$$

Is this BLUE ?
Possible disadvantage of mixed model analysis ?

Results regarding fraction (brøk-regning) test results

Estimates of treatment effects and p-values:

OLS	OLS p-value	permutation p-value
-2.39	0	0.014
Mixed (BLUE)	approx $t p$-value	permutation
-1.34	0.151	0.145

Permutation: randomly permute schools into treatment and control and assess treatment effect for each permuted data set. Under null-hypothesis, data should come from this permutation distribution.

Whole grain (WG) vs. refined grain (RG)

Subjects randomly allocated to two treatment arms:
Group 1: baseline WG RG
Group 2: baseline RG WG
Outcome: LDL cholesterol in blood

Note: possible cross over effect (treatment effect WG-RG may depend on order of treament (WG first or last)

For i th subject three measurements $Y_{i t}, t=1,2,3$

Standard approach: regression using baseline $Y_{1 t}$ as covariate:

$$
Y_{i t}=\mu_{i t}+\alpha Y_{i 1}+\epsilon_{i t}, \quad t=2,3
$$

$\mu_{i t}$: two sided ANOVA based on Group $(1,2)$ and Treatment (WG, RG)

Problem: we need to skip all observations for i if baseline is missing!

Alternative: mixed model with subject random effect

$$
Y_{i t}=\mu_{i t}+U_{i t}+\epsilon_{i t}, \quad t=1,2,3
$$

Specification of $\mu_{i t}$ more complicated since Treatment now has three levels WG, RG and baseline. Due to randomization, no group effect for baseline!

Results: no cross over effect, WG good for reducing LDL :)

