
Course topics

◮ random effects

◮ linear mixed models

◮ analysis of variance

◮ frequentist likelihood-based inference (MLE and REML)

◮ prediction

◮ Bayesian inference
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Outline for today

◮ examples of data sets.

◮ analysis of variance

◮ multivariate normal distribution

◮ density for multivariate normal distribution
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Reflectance (colour) measurements for samples of
cardboard (egg trays) (project at Department of
Biotechnology, Chemistry and Environmental Engineering)

Four replications at same
position on each cardboard
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For five cardboards: four
replications at four positions at
each cardboard
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Colour variation between/within cardboards ?
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Orthodontic growth curves

Distance between pituitary and the pterygomaxillary fissure for
children of age 8-14

Distance versus age:
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Orthodontic growth curves

Distance between pituitary and the pterygomaxillary fissure for
children of age 8-14

Distance versus age:
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Distance versus age grouped
according to child

age

d
is

ta
n
c
e

20

25

30

8 9 10 11 12 13 14

Different intercepts for different children
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Compression of mats for cows

Compression vs. pressure for two brands
of mats

pressure

c
o
m

p
re

s
s
io

n

0

10

20

30

40

0 1 2 3 4

0

0 1 2 3 4

1

Non-linear relation

y =
ab + cxd

b + xd
,

Random variation between
mats of same brand, small
measurement noise.
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Electricity consumption and temperature in Sweden

Temperature and electricity consumption:
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Consumption versus temperature and residuals from linear
regression:
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Serial correlation !
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Model for reflectances: one-way anova

Four replications on each
cardboard
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Models:

Yij = ξ + ǫij

i = 1, . . . , k j = 1, . . . ,m
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Model for reflectances: one-way anova

Four replications on each
cardboard
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Models:

Yij = ξ + ǫij

i = 1, . . . , k j = 1, . . . ,m

or
Yij = ξ + αi + ǫij

where ξ and αi are fixed
unknown parameters and ǫij
stochastic noise
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Model for reflectances: one-way anova

Four replications on each
cardboard
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Models:

Yij = ξ + ǫij

i = 1, . . . , k j = 1, . . . ,m

or
Yij = ξ + αi + ǫij

where ξ and αi are fixed
unknown parameters and ǫij
stochastic noise or

Yij = ξ + Ui + ǫij

where Ui are random variables

Which is most relevant ?
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One role of random effects: parsimonious and population
relevant models

With fixed effects αi : many parameters (ξ, σ2, α2, . . . , α34).
Parameters α2, . . . , α34 not interesting as they just represent
intercepts for specific card boards which are individually not of
interest.

With random effects: just three parameters (ξ, σ2 = Varǫij and
τ2 = VarUi ).

Hence parsimonious model. Variance parameters interesting for
several reasons.
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Second role of random effects: quantify sources of variation

Quantify sources of variation (e.g. quality control): is pulp for
paper production too heterogeneous ?

With random effects model

Yij = ξ + Ui + ǫij

we have decomposition of variance:

VarYij = VarUi + Varǫij = τ2 + σ2

Hence we can quantify variation between (τ2) cardboard pieces
and within (σ2) cardboard.
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Ratio γ = τ2/σ2 is ‘signal to noise’.

Proportion of variance

τ2

σ2 + τ2
=

γ

γ + 1

is called intra-class correlation.

High proportion of between cardboard variance leads to high
correlation (next slide).
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Third role: modeling of covariance and correlation

Covariances:

Cov[Yij ,Yi ′j ′ ] =





0 i 6= i ′

VarUi i = i ′, j 6= j ′

VarUi + Varǫij i = i ′, j = j ′

Correlations:

Corr[Yij ,Yi ′j ′ ] =





0 i 6= i ′

τ2/(σ2 + τ2) i = i ′, j 6= j ′

1 i = i ′, j = j ′

That is, observations for same cardboard are correlated !

Correct modeling of correlation is important for correct evaluation
of uncertainty.
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Fourth role: correct evalution of uncertainty
Suppose we wish to estimate ξ = EYij . Due to correlation,
observations on same cardboard to some extent redundant.

Estimate is empirical average ξ̂ = Ȳ··. Evaluation of VarȲ··:

Model erroneously ignoring
variation between cardboards

Yij = ξ + ǫij

Varǫij = σ2
total = σ2 + τ2

Naive variance expression is

VarȲ·· =
σ2
total

n
=

σ2 + τ2

km

Correct model with random
cardboard effects

Yij = ξ + Ui + ǫij ,

VarUi = τ2, Varǫij = σ2

Correct variance expression is

VarȲ·· =
τ2

k
+

σ2

km

With first model, variance is underestimated !

For VarȲ·· → 0 is it enough that km → ∞ ?
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Balanced one-way ANOVA (analysis of variance)
Decomposition of empirical variance/sums of squares (i = 1, . . . , k ,
j = 1, . . . ,m):

SST =
∑

ij

(Yij−Ȳ··)2 =
∑

ij

(Yij−Ȳi ·)
2+m

∑

i

(Ȳi ·−Ȳ··)2 = SSE+SSB

Expected sums of squares:

ESSE = k(m − 1)σ2

ESSB = m(k − 1)τ2 + (k − 1)σ2

Moment-based estimates:

σ̂2 =
SSE

k(m − 1)
τ̂2 =

SSB/(k − 1)− σ̂2

m

NB: τ̂2 may be negative.

Slightly less nice formulae in the unbalanced case (Thm 5.3 in
M&T)
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Design of experiment - one-way ANOVA

Suppose Yij is outcome of analysis of jth sample in ith lab, τ2 = 2
variance between labs and σ2 = 1 measurement variance.

Suppose we want to analyze in total 100 samples. What is then
the optimal number of labs that makes VarȲ·· minimal?

Suppose instead we have available 5000 kr., there is an initial cost
of 200 kr. for each lab and subsequently 10 kr. for the analysis of
each sample. What is then the optimal number k of labs that gives
the smallest VarȲ·· ?

Exercise !
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Two levels of random effects

For five cardboards we have 4 replications at 4 positions.

Hierarchical model (nested random effects)

Yipj = ξ + Ui + Uip + ǫipj

VarYipj = τ2 + ω2 + σ2
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Covariance structure for nested random effects model

Yipj = ξ + Ui + Uip + ǫipj

Cov(Yipj ,Ylqk) =





0 i 6= l

τ2 i = l , p 6= q same card

τ2 + ω2 i = l , p = q same card and pos.

τ2 + ω2 + σ2 i = l , p = q, k = j (VarYipj)
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Correlation structure for nested random effects model

Yipj = ξ + Ui + Uip + ǫipj

Corr(Yipj ,Ylqk) =





0 i 6= l
τ2

σ2+ω2+τ2
i = l , p 6= q

τ2+ω2

σ2+ω2+τ2
i = l , p = q

1 i = l , p = q, k = j
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Model for longitudinal growth data

Yij = ξi + ηixij + ǫij

i : child, j : time.

Random intercepts and slopes ?

Correlated error ǫij ? e.g. AR(1)

ǫij = φǫi(j−1) + νij
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Summary - role of random effects

Random effects models are useful for:

◮ quantifying different sources of variation

◮ appropriate modelling of correlation (⇒ correct evalution of
uncertainty of parameter estimates)

◮ sometimes individual subject specific effects not of interest -
the population variation of effects more interesting

◮ more parsimonious models (replace many systematic effects by
just one variance)
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Likelihood based inference

Need probability density

Normal distribution allows to build tractable and (reasonably)
flexible models
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Multivariate normal distribution
Let µ ∈ Rp and Σ a p × p symmetric and positive semidefinite
p × p matrix.

Spectral decomposition of Σ:

Σ = OΛOT

where O orthonormal matrix (columns=eigen vectors) and Λ
diagonal matrix of eigen values.

Definition: a p-variate random p × 1 vector Y is p-variate normal
Np(µ,Σ) if Y is distributed as

µ+ OΛ1/2Z

where Z = (Z1, . . . ,Zp) is a vector of independent standard normal
random variables.
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Geometric interpretation and PCA (principal component
analysis)

Assume µ = 0.

Λ1/2: scaling. O rotation. I.e. Y scaled and rotated Z .

Starting with Y : Let vi ith eigen vector in O. Then vTi Y =
√
λiZi

(projection on vi ) ith principal component with variance λi .

Principal components are independent (uncorrelated if Y not
normal).

Since λ1 > λ2, . . . , λp, v
T
1 Y explains most of the variance in Y

(
∑

i VarYi =
∑

i λi ) etc.

vi is called loading vector for ith PC.
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Equivalent definitions:

Definition: a random p × 1 vector Y is p-variate normal with mean
µ and covariance matrix Σ if aTY is univariate normal with mean
aTµ and variance aTΣa for any a ∈ Rp.

Definition: a random p × 1 vector Y is p-variate normal with mean
µ and covariance matrix Σ if Y has characteristic function
φ(t) = E exp(itTY ) = exp(itTµ− tTΣt/2).

From the last definition it follows easily that

Y ∼ Np(µ,Σ) ⇒ AY ∼ Nm(Aµ,AΣA
T)

for any m × p matrix A.

Since VaraTY = aTΣa ≥ 0 it follows that Σ must be positive
semi-definite.

NB: the distribution of a random vector is uniquely determined by
the characteristic function. 28 / 34



Density of multivariate normal

Suppose Zi are independent standard normal.

Then Z = (Z1, . . . ,Zp) ∼ Np(0, I ) with joint density

fZ (z1, . . . , zp) = (2π)−p/2 exp(−‖z‖2/2)

Suppose further that Y ∼ Np(µ,Σ) where Σ positive definite.
Then Σ = LLT for some invertible matrix L (Cholesky or spectral
decomposition).

Thus Y ∼ µ+ LZ and Jacobian of transformation is |L| = |Σ|1/2.
By multivariate transformation theorem

fY (y1, . . . , yp) = (2π)−p/2|Σ|−1/2 exp(−1

2
(y − µ)TΣ−1(y − µ))
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Density if Σ not positive definite
Suppose Σ has rank r < p. Then λr+1 = · · · = λp = 0 and Y − µ
lives on subspace L = span{v1, . . . , vr} ⊂ Rp.

Possible to define density function on L with respect to
“r”-dimensional Lebesgue measure on L.

It is of the form:

(2π)−r/2(
r∏

i=1

λi )
−1/2 exp[−1

2
(y − µ)TΣ−(y − µ)]

where

Σ− = Odiag(λ−1
1 , . . . , λ−1

r , 0, . . . , 0)OT and
r∏

i=1

λi

are generalized inverse and generalized determinant of Σ.

(we will see several examples of this during the course)
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Exercises

1. Show results regarding covariances and correlations in one-way
and two-level ANOVA (slide 16 and 21-22).

2. compute VarȲ·· for one way ANOVA.

3. compute expectations of SSB and SSE in one-way ANOVA.

4. fit linear models for the orthodontic growth curves with
subject specific intercepts. Draw histograms of the fitted
intercepts (can be extracted using coef()). Check residuals
from the model. Also fit model with common intercept and
plot residuals against subject.

5. compute covariance and correlation structure of observations
from linear models with random intercepts and random slopes:

Yij = α+ Ui + βxij + Vixij + ǫij

where Ui ∼ N(0, τ2U) and Vi ∼ N(0, τ2V ) and Corr(Ui ,Vi ) = ρ
(while (Ui ,Vi ) and (U ′

i ,V
′
i ) independent when i 6= i ′). What

can you say about the variance structure of Yij ?
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More exercises

6. show
Y ∼ Np(µ,Σ) ⇒ AY ∼ Nm(Aµ,AΣA

T)

7. show that the three definitions of multivariate normal
distribution are equivalent

8. solve the design of experiment problem regarding optimal
choice of number of laboratories for the one-way ANOVA

32 / 34



One more exercise

9. In Bayesian statistics the following pairwise-difference density
is often used as a ‘smoothing prior’ (promotes similar values
of yi and yi−1):

f (y1, . . . , yn) ∝ exp(−1

2

n∑

i=2

(yi − yi−1)
2)

9.1 Find Q playing the role as Σ−1 so that the above is of the
form of a multivariate Gaussian density. Is Q invertible ?

9.2 Can you find a ‘square-root’ of Q ?
9.3 Find the eigen space for the eigen value 0.
9.4 The pairwise-difference density can be viewed as a density on

an n − 1-dimensional subspace L. Characterize L.
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