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Linear mixed models Linear mixed model: general form

Consider mixed model: Consider model

Y =XB+2ZU+e
Yij =P+ Ui+ foxi + € where U ~ N(0,¥) and € ~ N(0, ¥) are independent.

May be written in matrix vector form as . . .
All previous models special cases of this.

Y=X8+2ZU+¢
Then Y has multivariate normal distribution
where 3 = (61, 62)7, U= (Us,..., U)T and .
€= (€e11,€12, ..., €km)', Xisnx2and Zis nx k. Y~ N(XB,ZWZ' +7)
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Hierarchical version

1. U~ N(0,¥)
2. Y|U=un~ NXB+ Zu,¥)

Useful for generalization to generalized linear mixed models.
Ex: Poisson log-normal:

Given U = u, Y] independent with Y; ~ Poisson()\;) where
Ai = exp(n;) and n = X8 + Zu.

Note likelihood (marginal density of Y) typically not of simple
form in case of generalized linear mixed models.

Inverse of covariance matrix

Assume X positive definite (e.g. scaled identity matrix).
Then ZWZT + ¥ guaranteed to be positive definite and
(ZvZT 45y t=x s lz(w 4+ 7Ty 12)" 17Tt

Right hand side may be easier to evaluate if ¥~1 and ZT¥"1Z
sparse (e.g. AR(1) random effects - next slide)

Some useful matrix identities

Woodbury identity:
(A+BCD) =A"t —AT1B(C + DAT!B)IDA™?

(C+ DA 'B)" DA™Y = CD(BCD + A) ™!
(CL 4+ B'ATIB)IBtA™! = CBY(BCB! + A)!
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Example AR(1) - covariance and inverse covariance
Consider U; = v1 and

U=aU_1+v, i=2,....m

where v; independent zero-mean normal with variances Varv; = 7'12

and Vary; = 72, i > 1.

Then U = Bv for some B so U ~ N,(0, BCBT) where
C = diag(72,72,...,72). Hence ¥ = BCBT and
\U_l — (B_I)TC_IB_l.

NB: B~! and C~! are sparse (many zeros) and hence allows fast
computations. So is W1 |

Expressions for covariances simplify in the stationary case |a| < 1
and 72 = 72/(1 - a%).

Limiting case a — 1 is improper pairwise difference density.
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ANOVA models Likelihood for linear mixed model

ANOVA models arise when model specified using

cross-combinations of factors/grouping variables or nested factors. log likelihood for linear mixed model with covariance matrix
V() =2ZvZ" + 3%

Example: one- and two-way analysis of variance.

1 1 _
—5 log(IV(@)]) = 5(y = XB)TV(¥) "y — XB)
Example: nested model for reflectance measurements. 2 2

. ] 1: parameters for covariance matrix (e.g. variance components)
E.g. one-way ANOVA: Z has entries Z(j 4 =1/i=q and 0
otherwise, i,g=1,....kj=1,....,m.
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MLE and weighted least squares Estimation using orthogonal projections

Suppose Y ~ N,(u,021), 4 = XB. Let P be orthogonal projection

Assume 1 known. MLE for § is weighted least squares estimate on M — span(X) (assuming X full rank, P — X(XTX)~1xT).

B(y) = in(y — X8)"V() y — X
A) = argminly = XB) V(9] "y = XP) Then by Pythagoras, ||Y — XSI> = [|Y — PY | + [ PY — X5

P — (XTx)-1xT
Differentiate and equate to zero: Hence i = Py and = (X' X)Xy

XTV() ™y — XB) =0 < B(¢) = (XTV() X)) IXTV(y) 1y Moreover 62 = [|Y = PY||?/n = ||Y — X3|*/n.

(provided relevant inverses exist) Suppose now Y ~ No(p, 0> W) where W = LLT fixed. Then MLE
based on Y and Y = L=1Y equivalent. Note Cov(Y) = o2/ and

Covariance parameters 1): often numerical optimization is needed EY = L71X3 = XB. Hence by the above,

to maximize profile likelihood A o~ -
ﬁ — (XTX)71XT_)7 — (XTW71X)71XTW71}/

~Llog(IV(¥))) ~ 3y — XBW) V() y — XAw))

and . .
82 =(y—XB)TWy - XB3)/n
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Profile likelihood - uncorrelated noise

Suppose Cove = o2/ (n x n) and CovU = ¥ = 72L(0)L(0)"
(k x k)

Then (¢ = (02,0, 6))

V() = o?(1 + ¢ZL(O)L(0)TZT) = 0®W(6,0)
where ¢ = 72 /0 (signal to noise ratio).
Given ¢ and 6,

B(¢,0) = (XTWH,0)X) I XTW(¢,0) 1y

and

82(6,0) = (v — XB(6,0)TW(6,0)(y - XB(6,6))

Some further useful matrix results

Consider
A1 A
A =
[Am Azj
Suppose Aj; is invertible. Then
Al = |A11|A2 — An A A
SimiIarIy, if A22 is invertible:|A| = |A22||A11 — A12A521A21|

Proof: use that

A1l A1 :| . |: / 0:| A
0 A22—A21Af11A12 —/421/41711 /

Moreover, if A: nx k and B : k x n then
|l + AB| = |l + BA|
Proof: use above result on
, —A
B I
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Then use matrix identity and result on next slide to get

W(s,0)™" = (I + ¢ZL(O)L(O)TZT) ! =
I=Z(¢ N LO)) ')yt + 272y 1 Z7

and
ln + $ZL(O)L(6)T ZT| = |l + oL(O)L(6) " 27 Z|

Note: now we just need to invert/compute determinant of k x k
and typically k < n.

Profile log likelihood for (¢, 8):

I(¢,0) = —% log |6%(¢, ) W (6, 0)| — g =

~ 210 3%(0,0) ~ 3 log Ik + GLO)LE) 272

MLE's of variances biased or inconsistent

For simple normal sample Y; ~ N(¢,02), MLE 2 is biased:

Es?=0%*(n—1)/n

Bias arise from estimation of & (3":(yi — &)? vs >_;(yvi — 7.)?).

Neyman-Scott example: y;j =& +¢€;, i=1,...,kand j =1,2.
MLE of o2 not even consistent as k tends to infinity (exercise).
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REML (restricted/residual maximum likelihood) REML continued

Idea: linear transform of data which eliminates mean. Suppose
design matrix X : nx p and let A: n x (n— p) have columns
spanning the orthogonal complement M=+ of M = spanX. Then
ATX =0.

Transformed data ((n — p) x 1) Given REML estimate 7) we use weighted least squares estimate of

Y=ATY = ATZU + AT & 1y Ty
e = (XTV(E) X)XV )y

has mean 0 and covariance matrix AT V/(1))A. Then proceed as for

MLE.

NB: suppose A and B both span ML. Then the same REML
estimate of ¢ is obtained (prNoof: B = AC for an invertible matrix
C, write out likelihoods for Y using A and AC).

NB: M~ is the null-space of XT.
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REML examples Implementation of REML - uncorrelated noise
Suppose Cove = 02/ and CovU = W = 72L(0)L(0)T

Then
V(1) = a?(I + ¢ZL(O)L(0)TZT) = 0* W (6, 6)
Simple normal sample: A has columns ¢ — 1,/n, i=1,...,n—1 where ¢ = 72/02.
where 1,, is the n-vector of 1's and ¢; is the ith standard basis
vector.

Choose A so that columns form an orthogonal basis for M+ where

Alternative: use columns e —e,, i=1,...,n—1. M = spanX. Then ATA =/ and AAT = — X(XTX)"1XT (since
AAT is a projection matrix).

Neyman-Scott problem: AT has rows of the form (1,-1,0,...,0),

(0,0,1,—-1,0,...,0) etc.

CovATY = ATV()A = o (1+pATZL(O)L(O) T ZTA)  (n—p)x(n—p)
Hence given (¢, 0) estimate of o2

5%(4,0) =

1 [ YTY - YTATZ[p 1 (L(O)L(O)T) * + ZTAATZ] 1 ZT AY]
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Profile REML log likelihood for (¢, 8):

1(¢,0) = — " > P log5%(s,0) — % log | (1 + 6ZTAAT ZL(6)L(6)"|

Note: depends only on A through AAT =/ — X(XTX)~1XT. This
again shows that specific choice of basis for M+ does not matter.

(if columns in A not orthogonal, we would have
AATA)TTAT = | — X(XTX)71XT and reach the same conclusion)

REML for balanced one-way ANOVA

E.g. A as for simple normal sample, i.e. yjj = yj — .

Then REML equations for estimating 72 and ¢ coincide with the
moment equations.
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MLE for balanced one-way ANOVA

Maximizing likelihood for balanced one-way (M&T Thm 5.4 and
remarks 5.13-5.16)

. SSE SSB/k — &2
_ o a2 _ A2
§=y.0"= k(m—l)’T m
k—1 k—1
E62 = o2 ESSB/k:Ta2+m 2

k

Hence 72 biased. It is asymptotically unbiased as k tends to
infinity.

In lecture 3 we derive the MLEs using orthogonal projections.
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Maximization

NB: In general profile likelihoods (MLE or REML) must be
maximized numerically (e.g. Newton-Raphson).

For one-way ANOVA we can do it by hand in closed form but
tedious.

In special case of balanced ANOVA models orthogonal
decomposition makes MLE very easy (later)
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Computational details Exercises

1. Verify ‘useful matrix identities’ and ‘further useful matrix
results’.
2. formulate random intercept and slope model

For the general linear mixed model computational complexity arises yij = Bo + Bixij + Ui + Vixij + €
from the need to invert and compute determinant of V/(¢). as general linear mixed model. What are the design matrices
Xand Z 7
Strategies covered here include using possible sparsity of W or 3. (AR(1)-model)
possible low dimension k << n of W 3.1 Identify B~! and B and compute W and W1 in case of
la| < 1.

3.2 Formulate V! = (W 4 ¢2/)~1 in terms of sparse matrices
where V is covariance matrix for the model Y; =&+ U; +¢;
(AR(1)+noise).

3.3 Show (stationarity)

Ui ~ N(0,72/(1 — a%)) = Uiy1 ~ N(0,72/(1 — a?)) (when
la] < 1).

3.4 Consider the limit as a — 1 of the density of an AR(1) with

72 = 72/(1 — 2%). How is this related to the smoothing prior in

Exercise 9 from lecture 1 7
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Usually we just need to specify X and Z and then general software
(R or SAS) takes care of numerical details and maximization.

4. Show that the REML variance estimate for a simple normal
sample coincides with s2.

5. Compute MLE and REML estimates for the Neyman-Scott
example. Compute mean and variance for the estimates of o2.

6. Show that if A and B both span the orthogonal complement
of spanX then the same REML estimates are obtained from
ATY and BTY.

7. Go carefully through the derivations leading to profile log
likelihood and REML profile log likelihood.

8. Suppose Y has a parametric density fy (- 6) and Y = T(Y)
for a differentiable and invertible transformation T that does
not depend on 6. Show that the MLE for 6 based on Y
coincides with the MLE of 6 based on Y. Further, if ¢ = g()
for some invertible transformation g then the MLE of ¢
coincides with g_l(t/A;) where ) is the MLE of .

9. Compute variance of MLE 52 and REML estimate s given
that 37, (Vi — Y)%is 02x?(n — 1) (hint: Vary?(f) = 2f).
What happens with the difference between the two estimates

when n tends to infinity ?
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