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Outline for today

◮ linear mixed models

◮ the likelihood function

◮ maximum likelihood estimation

◮ restricted maximum likelihood estimation
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Linear mixed models

Consider mixed model:

Yij = β1 + Ui + β2xij + ǫij

May be written in matrix vector form as

Y = Xβ + ZU + ǫ

where β = (β1, β2)
T, U = (U1, . . . ,Uk)

T and
ǫ = (ǫ11, ǫ12, . . . , ǫkm)

T, X is n × 2 and Z is n × k .
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Linear mixed model: general form

Consider model
Y = Xβ + ZU + ǫ

where U ∼ N(0,Ψ) and ǫ ∼ N(0,Σ) are independent.

All previous models special cases of this.

Then Y has multivariate normal distribution

Y ∼ N(Xβ,ZΨZT +Σ)
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Hierarchical version

1. U ∼ N(0,Ψ)

2. Y |U = u ∼ N(Xβ + Zu,Σ)

Useful for generalization to generalized linear mixed models.

Ex: Poisson log-normal:

Given U = u, Yi independent with Yi ∼ Poisson(λi ) where
λi = exp(ηi ) and η = Xβ + Zu.

Note likelihood (marginal density of Y ) typically not of simple
form in case of generalized linear mixed models.

5 / 28

Some useful matrix identities

Woodbury identity:

(A+ BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

(C−1 + DA−1B)−1DA−1 = CD(BCD + A)−1

(C−1 + BtA−1B)−1BtA−1 = CB t(BCBt + A)−1
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Inverse of covariance matrix

Assume Σ positive definite (e.g. scaled identity matrix).

Then ZΨZT +Σ guaranteed to be positive definite and

(ZΨZT +Σ)−1 = Σ−1 − Σ−1Z (Ψ−1 + ZTΣ−1Z )−1ZTΣ−1

Right hand side may be easier to evaluate if Ψ−1 and ZTΣ−1Z
sparse (e.g. AR(1) random effects - next slide)
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Example AR(1) - covariance and inverse covariance
Consider U1 = ν1 and

Ui = aUi−1 + νi , i = 2, . . . ,m

where νi independent zero-mean normal with variances Varν1 = τ21
and Varνi = τ2, i > 1.

Then U = Bν for some B so U ∼ Nn(0,BCB
T) where

C = diag(τ21 , τ
2, . . . , τ2). Hence Ψ = BCBT and

Ψ−1 = (B−1)TC−1B−1.

NB: B−1 and C−1 are sparse (many zeros) and hence allows fast
computations. So is Ψ−1 !

Expressions for covariances simplify in the stationary case |a| < 1
and τ21 = τ2/(1− a2).

Limiting case a → 1 is improper pairwise difference density.
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ANOVA models

ANOVA models arise when model specified using
cross-combinations of factors/grouping variables or nested factors.

Example: one- and two-way analysis of variance.

Example: nested model for reflectance measurements.

E.g. one-way ANOVA: Z has entries Z(ij),q = 1 i = q and 0
otherwise, i , q = 1, . . . , k j = 1, . . . ,m.

9 / 28

Likelihood for linear mixed model

log likelihood for linear mixed model with covariance matrix
V (ψ) = ZΨZT +Σ:

−1

2
log(|V (ψ)|)− 1

2
(y − Xβ)TV (ψ)−1(y − Xβ)

ψ: parameters for covariance matrix (e.g. variance components)
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MLE and weighted least squares

Assume ψ known. MLE for β is weighted least squares estimate

β̂(ψ) = argmin
β

(y − Xβ)TV (ψ)−1(y − Xβ)

Differentiate and equate to zero:

XTV (ψ)−1(y − Xβ) = 0 ⇔ β̂(ψ) = (XTV (ψ)−1X )−1XTV (ψ)−1y

(provided relevant inverses exist)

Covariance parameters ψ: often numerical optimization is needed
to maximize profile likelihood

−1

2
log(|V (ψ)|)− 1

2
(y − X β̂(ψ))TV (ψ)−1(y − X β̂(ψ))
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Estimation using orthogonal projections

Suppose Y ∼ Nn(µ, σ
2I ), µ = Xβ. Let P be orthogonal projection

on M = span(X ) (assuming X full rank, P = X (XTX )−1XT).

Then by Pythagoras, ‖Y − Xβ‖2 = ‖Y − PY ‖2 + ‖PY − Xβ‖2.
Hence µ̂ = Py and β̂ = (XTX )−1XTy .

Moreover σ̂2 = ‖Y − PY ‖2/n = ‖Y − X β̂‖2/n.

Suppose now Y ∼ Nn(µ, σ
2W ) where W = LLT fixed. Then MLE

based on Y and Ỹ = L−1Y equivalent. Note Cov(Ỹ ) = σ2I and
EỸ = L−1Xβ = X̃β. Hence by the above,

β̂ = (X̃TX̃ )−1X̃Tỹ = (XTW−1X )−1XTW−1y

and
σ̂2 = (y − X β̂)TW−1(y − X β̂)/n
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Profile likelihood - uncorrelated noise

Suppose Covǫ = σ2I (n × n) and CovU = Ψ = τ2L(θ)L(θ)T

(k × k)

Then (ψ = (σ2, θ, φ))

V (ψ) = σ2(I + φZL(θ)L(θ)TZT) = σ2W (φ, θ)

where φ = τ2/σ2 (signal to noise ratio).

Given φ and θ,

β̂(φ, θ) = (XTW−1(φ, θ)X )−1XTW (φ, θ)−1y

and

σ̂2(φ, θ) =
1

n
(y − X β̂(φ, θ))TW (φ, θ)−1(y − X β̂(φ, θ))
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Then use matrix identity and result on next slide to get

W (φ, θ)−1 = (I + φZL(θ)L(θ)TZT)−1 =

I − Z (φ−1(L(θ)T)−1L(θ)−1 + ZTZ )−1ZT

and
|In + φZL(θ)L(θ)TZT| = |Ik + φL(θ)L(θ)TZTZ |

Note: now we just need to invert/compute determinant of k × k
and typically k < n.

Profile log likelihood for (φ, θ):

l(φ, θ) = −1

2
log |σ̂2(φ, θ)W (φ, θ)| − n

2
≡

− n

2
log σ̂2(φ, θ)− 1

2
log |Ik + φL(θ)L(θ)TZTZ |
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Some further useful matrix results
Consider

A =

[
A11 A12

A21 A22

]

Suppose A11 is invertible. Then

|A| = |A11||A22 − A21A
−1
11 A12|

Similarly, if A22 is invertible:|A| = |A22||A11 − A12A
−1
22 A21|

Proof: use that[
A11 A12

0 A22 − A21A
−1
11 A12

]
=

[
I 0

−A21A
−1
11 I

]
A

Moreover, if A : n × k and B : k × n then

|In + AB | = |Ik + BA|
Proof: use above result on [

In −A
B Ik

]
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MLE’s of variances biased or inconsistent

For simple normal sample Yi ∼ N(ξ, σ2), MLE σ̂2 is biased:

E σ̂2 = σ2(n − 1)/n

Bias arise from estimation of ξ (
∑

i (yi − ξ)2 vs
∑

i (yi − ȳ·)2).

Neyman-Scott example: yij = ξi + ǫij , i = 1, . . . , k and j = 1, 2.
MLE of σ2 not even consistent as k tends to infinity (exercise).
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REML (restricted/residual maximum likelihood)

Idea: linear transform of data which eliminates mean. Suppose
design matrix X : n × p and let A : n × (n − p) have columns
spanning the orthogonal complement M⊥ of M = spanX . Then
ATX = 0.

Transformed data ((n − p)× 1)

Ỹ = ATY = ATZU + ATǫ

has mean 0 and covariance matrix ATV (ψ)A. Then proceed as for
MLE.

NB: suppose A and B both span M⊥. Then the same REML
estimate of ψ is obtained (proof: B = AC for an invertible matrix
C , write out likelihoods for Ỹ using A and AC ).

NB: M⊥ is the null-space of XT.
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REML continued

Given REML estimate ψ̂ we use weighted least squares estimate of
β:

β̂ = (XTV (ψ̂)−1X )−1XTV−1(ψ̂)y
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REML examples

Simple normal sample: A has columns ei − 1n/n, i = 1, . . . , n − 1
where 1n is the n-vector of 1’s and ei is the ith standard basis
vector.

Alternative: use columns ei − en, i = 1, . . . , n − 1.

Neyman-Scott problem: AT has rows of the form (1,−1, 0, . . . , 0),
(0, 0, 1,−1, 0, . . . , 0) etc.
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Implementation of REML - uncorrelated noise
Suppose Covǫ = σ2I and CovU = Ψ = τ2L(θ)L(θ)T

Then
V (ψ) = σ2(I + φZL(θ)L(θ)TZT) = σ2W (φ, θ)

where φ = τ2/σ2.

Choose A so that columns form an orthogonal basis for M⊥ where
M = spanX . Then ATA = I and AAT = I − X (XTX )−1XT (since
AAT is a projection matrix).

CovATY = ATV (ψ)A = σ2(I+φATZL(θ)L(θ)TZTA) (n−p)×(n−p)

Hence given (φ, θ) estimate of σ2 is

σ̂2(φ, θ) =

1

n − p

[
Ỹ TỸ − Ỹ TATZ [φ−1(L(θ)L(θ)T)−1+ZTAATZ ]−1ZTAỸ

]
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Profile REML log likelihood for (φ, θ):

l(φ, θ) = −n − p

2
log σ̂2(φ, θ)− 1

2
log |(I + φZTAATZL(θ)L(θ)T|

Note: depends only on A through AAT = I − X (XTX )−1XT. This
again shows that specific choice of basis for M⊥ does not matter.

(if columns in A not orthogonal, we would have
A(ATA)−1AT = I −X (XTX )−1XT and reach the same conclusion)

21 / 28

MLE for balanced one-way ANOVA

Maximizing likelihood for balanced one-way (M&T Thm 5.4 and
remarks 5.13-5.16)

ξ̂ = ȳ··, σ̂2 =
SSE

k(m − 1)
, τ̂2 =

SSB/k − σ̂2

m

Eσ̂2 = σ2 ESSB/k =
k − 1

k
σ2 +m

k − 1

k
τ2

Hence τ̂2 biased. It is asymptotically unbiased as k tends to
infinity.

In lecture 3 we derive the MLEs using orthogonal projections.
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REML for balanced one-way ANOVA

E.g. A as for simple normal sample, i.e. ỹij = yij − ȳ··

Then REML equations for estimating τ2 and σ2 coincide with the
moment equations.
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Maximization

NB: In general profile likelihoods (MLE or REML) must be
maximized numerically (e.g. Newton-Raphson).

For one-way ANOVA we can do it by hand in closed form but
tedious.

In special case of balanced ANOVA models orthogonal
decomposition makes MLE very easy (later)
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Computational details

For the general linear mixed model computational complexity arises
from the need to invert and compute determinant of V (ψ).

Strategies covered here include using possible sparsity of Ψ or
possible low dimension k << n of Ψ

Usually we just need to specify X and Z and then general software
(R or SAS) takes care of numerical details and maximization.
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Exercises
1. Verify ‘useful matrix identities’ and ‘further useful matrix

results’.
2. formulate random intercept and slope model

yij = β0 + β1xij + Ui + Vixij + ǫij

as general linear mixed model. What are the design matrices
X and Z ?

3. (AR(1)-model)
3.1 Identify B−1 and B and compute Ψ and Ψ−1 in case of

|a| < 1.
3.2 Formulate V−1 = (Ψ + σ2I )−1 in terms of sparse matrices

where V is covariance matrix for the model Yi = ξ + Ui + ǫi
(AR(1)+noise).

3.3 Show (stationarity)
Ui ∼ N(0, τ 2/(1− a2)) ⇒ Ui+1 ∼ N(0, τ 2/(1− a2)) (when
|a| < 1).

3.4 Consider the limit as a → 1 of the density of an AR(1) with
τ 21 = τ 2/(1− a2). How is this related to the smoothing prior in
Exercise 9 from lecture 1 ?

26 / 28

4. Show that the REML variance estimate for a simple normal
sample coincides with s2.

5. Compute MLE and REML estimates for the Neyman-Scott
example. Compute mean and variance for the estimates of σ2.

6. Show that if A and B both span the orthogonal complement
of spanX then the same REML estimates are obtained from
ATY and BTY .

7. Go carefully through the derivations leading to profile log
likelihood and REML profile log likelihood.

8. Suppose Y has a parametric density fY (·; θ) and Ỹ = T (Y )
for a differentiable and invertible transformation T that does
not depend on θ. Show that the MLE for θ based on Y
coincides with the MLE of θ based on Ỹ . Further, if ψ = g(θ)
for some invertible transformation g then the MLE of θ
coincides with g−1(ψ̂) where ψ̂ is the MLE of ψ.

9. Compute variance of MLE σ̂2 and REML estimate s2 given
that

∑n
i=1(Yi − Ȳ )2 is σ2χ2(n − 1) (hint: Varχ2(f ) = 2f ).

What happens with the difference between the two estimates
when n tends to infinity ?

27 / 28


