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Outline for today

◮ Likelihood ratio test

◮ Inference for the linear normal model

◮ Balanced one- and two-way ANOVA - test for fixed effects
and variance components
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General objectives

◮ Determine distributions of parameter estimates (confidence
intervals)

◮ Perform tests for hypotheses of interest (e.g. likelihood ratio
tests)

3 / 29

The linear model
Suppose Y ∼ Nn(µ, σ

2I ), µ = Xβ. Let P be orthogonal projection
on L = span(X ) of dimension d (assuming X full rank,
P = X (XTX )−1XT).

Then µ̂ = PY and σ̂2 = ‖(I − P)Y ‖2/n. It follows directly that µ̂
and σ̂2 are independent. Moreover β̂ = (XTX )−1XTY is the
unique solution to X β̂ = µ̂ and β̂ and σ̂2 are thus independent too.

µ̂ ∼ N(µ, σ2P), β̂ ∼ N(β, σ2(XTX )−1) and σ̂2 ∼ σ2χ2(n − d)/n.

Issue: distribution of β̂ involves unknown σ2. Let vi the i ’th
diagonal element in (XTX )−1. Then β̂i ∼ N(βi , σ

2vi ) and

t =
β̂i − βi√

σ̃2vi
∼ N(0, 1)√

χ2(n − d)/(n − d)
∼ t(n − d)

where σ̃2 = nσ̂2/(n − d) is REML estimate.
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Confidence intervals can be constructed easily from χ2 and t
distribution (Mat5).

We can also use t distribution to test H0 : βi = b0. Small and
large values of

t =
β̂i − b0√

σ̃2vi

are critical for this hypothesis (note t ∼ t(n − d) under H0).

p-value is the probability of observing larger value of |t| in
repeated experiments than the one actually observed.
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Likelihood ratio tests

Consider a statistical model with parameter space Θ and a
hypothesis H0 : θ ∈ Θ0 where Θ0 ⊂ Θ.

Let θ̂ = argmaxΘ L(θ) and θ̂0 = argmaxΘ0
L(θ).

Then LR = L(θ̂0)/L(θ̂) ≤ 1 and the smaller ratio, the less we
believe in H0 (the less data are likely under H0 than under the
alternative θ ∈ Θ \Θ0).

To judge how small LR is we compare LR with its distribution
under H0 - say LR ∼ FLR under H0.

The p-value is the probability (under H0 and repeated sampling) of
observing a smaller value of LR than the one, lr , actually observed:
p = FLR(lr).
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Often Q = −2 ln LR is used - in which case large values of Q are
critical and p = 1− FQ(q) (q = −2 log(lr)).

The problem is to determine FLR (or FQ). For certain models the
exact distributions are known but in general we need to rely on
asymptotic arguments.
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Recap: Beta and F-distributions

χ2(ν) = Γ(ν/2, 2) (β = 2 scale parameter)

B(α, α′) distribution of Γ(α, β)/[Γ(α, β) + Γ(α′, β)] where Γ(α, β)
and Γ(α′, β) independent.

F (f1, f2) distribution of [χ2(f1)/f1]/[χ
2(f2)/f2].
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Back to the linear normal model

Suppose H0 : µ ∈ L′ where L′ ⊂ L is a subspace of L of dimension
d ′. The maximized likelihood functions under µ ∈ L and µ ∈ L′ are

(σ̂2)−n/2 exp(−n/2) and ((σ̂2)′)−n/2 exp(−n/2)

where (σ̂2)′ = ‖(I − P ′)Y ‖2/n. Thus

LR =
(‖(I − P ′)Y ‖2
‖(I − P)Y ‖2

)−n/2

Moreover ‖(I − P ′)Y ‖2 = ‖(I − P)Y + (P − P ′)Y ‖2 =
‖(I − P)Y ‖2 + ‖(P − P ′)Y ‖2. Thus

B = LR2/n =
‖(I − P)Y ‖2

‖(I − P)Y ‖2 + ‖(P − P ′)Y ‖2

is beta B((n − d)/2, (d − d ′)/2)-distributed.
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Moreover B is in one to one correspondence with

F =
‖(P − P ′)Y ‖2/(d − d ′)
‖(I − P)Y ‖2/(n − d)

=
‖(P − P ′)Y ‖2/(d − d ′)

σ̃2

=
(‖(I − P ′)Y ‖2 − ‖(I − P)Y ‖2)/(d − d ′)

σ̃2

which is F (d − d ′, n − d) distributed. Note large values of F and
small values of B are critical.

Note: numerator in F measures differences in estimates of µ under
respectively µ ∈ L and µ ∈ L′. If this is small we tend to believe
µ ∈ L′.

Suppose L′ is obtained from L by removing ith column in X - this
corresponds to H0 : βi = 0. Then F is the squared t statistic for βi .
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Example F and t tests in linear model

#fit model with sex specific intercepts and slopes

> ort1=lm(distance~age+age:factor(Sex)+factor(Sex))

> summary(ort1)

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.3406 1.4162 11.538 < 2e-16 ***

age 0.7844 0.1262 6.217 1.07e-08 ***

factor(Sex)Female 1.0321 2.2188 0.465 0.643

age:factor(Sex)Female -0.3048 0.1977 -1.542 0.126

...

> #compute F-tests respecting hierarchical principle

> drop1(ort1,test="F")

Single term deletions

....

Df Sum of Sq RSS AIC F value Pr(F)

<none> 529.76 179.75

age:factor(Sex) 1 12.11 541.87 180.19 2.3782 0.1261

age:Sex not significant ! (but recall, model is wrong)
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Tests continued

Using anova() to test reduction from ort1 to ort2

> ort2=lm(distance~age+factor(Sex))

> anova(ort1,ort2)

Analysis of Variance Table

Model 1: distance ~ age + age:factor(Sex) + factor(Sex)

Model 2: distance ~ age + factor(Sex)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 104 529.76

2 105 541.87 -1 -12.114 2.3782 0.1261
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Tests continued

> ort2=lm(distance~age+factor(Sex))

> drop1(ort2,test="F")

Single term deletions

Model:

distance ~ age + factor(Sex)

Df Sum of Sq RSS AIC F value Pr(F)

<none> 541.87 180.19

age 1 235.36 777.23 217.15 45.606 8.253e-10 ***

factor(Sex) 1 140.46 682.34 203.09 27.218 9.198e-07 ***

both age and sex significant (but model still wrong)
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Test for fixed effects in balanced two-way ANOVA

Factorization of likelihood function:

|Σ|−1/2 exp(−1

2
(Y − µ)TΣ−1(Y − µ)) =

λ
−dP/2
P exp(− 1

2λP
‖Q̃PY − Q0µ‖2)×

(λP×T )
−(dP×T−dP)/2 exp(− 1

2λP×T
‖Q̃P×TY − QTµ‖2)×

(λI )
−(n−dP×T )/2 exp(− 1

2λI
‖QIY ‖2)

Formally equivalent to product of likelihoods for three linear
normal models.

(dP×T , dP , dT dimensions of LP×T , LP and LT )
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Suppose we want to test hypothesis of no treatment effect
H0 : βt = 0, t = 1, . . . , dT . Note that the only likelihood-factor
which differs under H0 is the second one:

(λP×T )
−(dP×T−dP)/2 exp(− 1

2λP×T
‖Q̃P×TY − QTµ‖2)

This corresponds to working with a linear normal model with data
Ỹ = Q̃P×TY , mean vector µ̃ = QTµ and variance λP×T .
Therefore

λ̂P×T = ‖QP×TY ‖2/(dP×T − dP)
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Under H0, µ = ξ1n whereby µ̃ = QTµ = 0. The maximum
likelihood estimate of λP×T under H0 is therefore

λ̂P×T ,0 = ‖Q̃P×TY ‖2/(dP×T − dP)

According to the results for the linear normal model, the likelihood
ratio becomes equivalent with the F -statistic

‖QTY ‖2/(dT − 1)

‖QP×TY ‖2/((dP − 1)(dT − 1))

(recall ‖Q̃P×TY ‖2 = ‖QP×TY ‖2 + ‖QTY ‖2)

Note QTY = PTY − P0Y hence ‖QTY ‖2 = ∑
ptr (Ȳ·t· − Ȳ···)2

(measures how much treatment group means differ from total
mean)
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Tests of fixed effects in balanced ANOVA with random
effects

Likelihood ratio tests equivalent to F -tests within the appropriate
strata.

I.e. need to identify the appropriate random effect whose mean
square (λ-estimate) becomes the denominator of the F -test. This
random effect is the coarsest random effect which is finer than the
fixed effect under investigation.
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Anova table:

> fit1=lm(intensity~treat*factor(exon)+factor(patient)+

factor(patient):treat,data=gene1)

> anova(fit1)

Analysis of Variance Table

Response: intensity

Df Sum Sq Mean Sq F value Pr(>F)

treat 1 3.242 3.242 14.4796 0.0002199 ***

factor(exon) 7 254.343 36.335 162.2852 < 2.2e-16 ***

factor(patient) 9 15.405 1.712 7.6449 6.703e-09 ***

treat:factor(exon) 7 2.238 0.320 1.4278 0.1998234

treat:factor(patient) 9 8.190 0.910 4.0643 0.0001345 ***

Residuals 126 28.211 0.224

F -test for TxE: 1.4278 with p-value 0.1998.
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ANOVA with treatment*exon removed:

> fit2=lm(intensity~treatment+factor(exon)+

factor(patient)+factor(patient):treatment,data=gene1)

> anova(fit2)

Analysis of Variance Table

Response: intensity

Df Sum Sq Mean Sq F value Pr(>F)

treatment 1 3.242 3.242 14.1608 0.0002508 ***

factor(exon) 7 254.343 36.335 158.7121 < 2.2e-16 ***

factor(patient) 9 15.405 1.712 7.4766 8.472e-09 ***

treatment:factor(patient 9 8.190 0.910 3.9749 0.0001636 ***

Residuals 133 30.448 0.229

treatment:factor(patient) (TxP) effect significant as systematic
effect.

Due to hierarchic principle we would not pursue test of treatment
main effect in a model with TxP as systematic effect.

How do we obtain test for treatment in model with TxP as random
effect ?
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With aov()

> fit1=aov(intensity~treatment*factor(exon)+Error(factor(patient)+factor(patient):treatment),data=gene1)

> summary(fit1)

Error: factor(patient)

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 9 15.4 1.712

Error: factor(patient):treatment

Df Sum Sq Mean Sq F value Pr(>F)

treatment 1 3.242 3.242 3.563 0.0917 .

Residuals 9 8.190 0.910

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

factor(exon) 7 254.34 36.33 162.285 <2e-16 ***

treatment:factor(exon) 7 2.24 0.32 1.428 0.2

Residuals 126 28.21 0.22

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Suppose we remove TxE from model of mean vector. Then we can
use F -test for T in PxT stratum.
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Test for zero between group variance in one-way ANOVA

Want to test H : τ2 = 0.

Recall λ = mτ2 + σ2. Hence τ2 = 0 equivalent to λ = σ2.

Natural statistic (though not LR):

F =
λ̃

σ̂2

which is F (k − 1, k(m − 1)) under H.

Large values critical.

NB: F-test is identical to F -test for no systematic effect of the
factor defining the one-way ANOVA !
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Test for variance components in two-way ANOVA

Recall λI = σ2, λP×T = σ2 + nP×Tσ
2
P×T and

λP = σ2 + nP×Tσ
2
P×T + nPσ

2
P .

Hence e.g. σ2
P×T = 0 ⇔ λI = λP×T .

Natural statistic (but not LR) for testing σ2
P×T = 0 is statistic

F =
λ̃P×T

λ̃I

which has F ((dP − 1)(dT − 1), n − dP×T ) distribution if
σ2
P×T = 0. Big values critical.

Note λ̃P×T = ‖QP×TY ‖2/((dP − 1)(dT − 1)) so F is identical to
statistic for testing fixed effect of factor P × T in a linear normal
model without random effects.
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Confidence intervals for variance components

Confidence intervals for ‘λ’ variance parameters straightforward
due to the exact χ2 distributions of their estimates.

Except for σ2 = λI , confidence intervals for original variance
parameters more complicated (estimates distributed as differences
of scaled χ2 distributions).
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Confidence interval for signal to noise ratio (M & T Thm
5.2 and Remark 5.10)

Consider one-way ANOVA.

F =
SSB/(k − 1)

SSE/(k(m − 1))
=

λ̃

σ̂2
∼

σ2 +mτ2

σ2
F (k − 1, k(m − 1)) = (1 +mγ)F (k − 1, k(m − 1))

Thus with qL and qU e.g. 2.5% and 97.5% quantiles for
F (k − 1, k(m − 1)) we have

P(qL ≤ F/(1 +mγ) ≤ qU) = 95% ⇔
P((F/qU − 1)/m ≤ γ ≤ (F/qL − 1)/m) = 95%
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Test of card board variance components

One-way anova: test of no card board heterogeneity.

F-test:

F =
λ̃P

λ̃I

=
0.0273

0.00006
= 450

which is F (33, 102) distributed.

p-value

> 1-pf(450,33,102)

[1] 0
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Implementation in R

For cardboard/reflectance data, k = 34 and m = 4.

> anova(lm(Reflektans~factor(Pap.nr.)))

Analysis of Variance Table

Response: Reflektans

Df Sum Sq Mean Sq F value Pr(>F)

factor(Pap.nr.) 33 0.90088 0.02730 470.7 < 2.2e-16 ***

Residuals 102 0.00592 0.00006

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’
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Using anova to test reduction

> m1=lm(Reflektans~factor(Pap.nr.))

> m2=lm(Reflektans~1)

> anova(m2,m1)

Analysis of Variance Table

Model 1: Reflektans ~ 1

Model 2: Reflektans ~ factor(Pap.nr.)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 135 0.90679

2 102 0.00592 33 0.90088 470.7 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Using lmer to test TxE

>fit1=lmer(intensity~treatment*factor(exon)+(1|patient)+(1|pa

>fit2=lmer(intensity~treatment+factor(exon)+(1|patient)+(1|pa

>anova(fit1,fit2)

Data: gene1

Models:

fit2: intensity ~ treatment + factor(exon) + (1 | patient)

fit1: intensity ~ treatment * factor(exon) + (1 | patient)

Df AIC BIC logLik deviance Chisq Df Pr(>Chisq)

fit2 12 266.80 303.70 -121.40 242.80

fit1 19 270.11 328.54 -116.06 232.11 10.686 7 0.1529

anova() applied to lmer effects computes p-values based on
approximate χ2 distribution of −2logLR rather than on exact
F -distribution :(

Next time we will see how the KRmodcomp() procedure can be
used to compute F -tests based on lmer-objects.
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Exercises

1. (one-way ANOVA) Show that the test for zero between group
variance is equivalent to the test for no fixed effect of the
factor defining the groups.

2. (gene example) Show that the F -test for a systematic
treatment:patient effect is equivalent to the F -test for zero
chip variance.

3. Write down all the details of how to obtain the F -test for the
fixed factor in the two-way ANOVA.

4. Compute estimate and F -test for σ2
P for the genes data

example.
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