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BLUE for general parameter and V =/

Theorem: Suppose EY = p is in linear subspace M and
CovY = 02l and ¢ = Ap. Then BLUE of 1 is ¢) = Afi where
= PY and P orthogonal projection on M.

Key result: o o
Cov(y =, ¢) =E[(¢ —¢)y] =0
for any other LUE ¢ = BY.

Proof of theorem follows by key result:

Var(¢) = Var(¢)—))+Var) = Var(¢))—Vard = Var(d—) > 0.
Hence 1) is BLUE (here A > B means A— B positive semi definite).
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WLS and BLUE (prelude to BLUP)
Suppose that Y has mean X3 and known covariance matrix V
(but Y need not be normal). Then
f=XTvix)IxTv-1ly
is a weighted least squares estimate since it minimizes
(Y = XB)TVHY = XB).

It is also the best linear unbiased estimate (BLUE) - that is the
unbiased estimate with smallest variance in the sense that

Vzaurﬂ~ — VarﬁA

is positive semi-definite for any other linear unbiased estimate /3.

Proof of key result:

Assume 7 is LUE. l.e. ¢ = BY and E¢) = By = Ap for all pu € L.
We also have APu = Ap for all u € M (which implies that ¢ is
unbiased). Thus for all w € RP

(B— AP)Pw = BPw — APw = APw — APw =0
since Pw € M. This implies (B — AP)P = 0 which gives

Cov(h — 1, ) = 0?(B — AP)PTAT = 0.
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BLUE - non-diagonal covariance matrix

Lemma: suppose Y = KY where K is an invertible matrix. If
1 = CY is BLUE of v based on data Y then ¢ = CKY is BLUE
based on Y as well.

Corollary: suppose V = LLT is invertible and ju = X3 where X has
full rank. Then BLUE of ¢ = Au is Afi where
f=XXTVIX)IXTV~1Y is WLS estimate of .

Proof: Y = L~1Y has covariance matrix / and mean = Xp
where ji = L=1y. Thus by theorem, BLUE of Ay = ALji is
ALX(XTX)~1XTY. Applying lemma we get BLUE based on Y is
ALX(XTX)IXTL-1y = Aj.

Remark: i above is in fact orthogonal projection of Y wrt. inner
product < x,y >=xTV71y.
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Optimal prediction

X and Y random variables, g real function. General result:

Cov(Y —E[Y|X],g(X)) =
Cov(E[Y — E[Y|X]|X], E[g(X)|X])+
ECov(Y — E[Y|X],g(X)|X) =0

In particular, for any prediction Y = f(X) of Y:
E[(Y - E[YIX])(E[Y[X] - f(X))] =0
from which it follows that
E(Y—Y)? = E(Y -E[Y|X])*+E(E[Y|X]-Y)? > E(Y —E[Y|X])?

Thus E[Y|X] minimizes mean square prediction error.
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fEstimable parameters and BLUE

Definition: A linear combination a' 3 is estimable if it has a LUE
bTY.

Result: a3 is estimable < a3 = ¢ i for some c.

By results on previous slides: If a' 3 is estimable then BLUE is ¢ ' fi.

TPythagoras and conditional expectation

Space of real random variables with finite variance may be viewed
as a vector space with inner product and (L2) norm

<X, Y >=E(XY) |X| = VEX?

Orthogonal decomposition (Pythagoras):
Y12 = [E[YIX]IZ + 1Y — E[Y[X]|]

E[Y|X] may be viewed as projection of Y on X since it minimizes
distance

E(Y — Y)?
among all predictors Y = £(X).
For zero-mean random variables, orthogonal is the same as
uncorrelated.

(Grimmett & Stirzaker, Prob. and Random Processes, Chapter 7.9 good
source on this perspective on prediction and conditional expectation)
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BLUP

Decomposition of Y: Consider random vectors Y and X with with mean vectors
Y =E[Y|X]+ (Y —E[Y[|X]) EY =uy EX = pux
where predictor E[Y|X] and prediction error Y — E[Y|X] and covariance matrix
uncorrelated. 5 [ZY ZYX]
[ Zxy Xx
Thus,
VarY = VarE[Y|X]+Var(Y—-E[Y|X]) = VarE[Y | X]+EVar[ Y| X] Then the best linear unbiased predictor of Y given X is
whereby Yy = ny + Zyx):}l(X — 1x)

Var(Y = E[Y|X]) = EVar[¥|X]. in the sense that

Prediction variance is equal to the expected conditional variance of .
Y. Var[Y — (a+ BX)] — Var[Y — Y]

is positive semi-definite for all linear unbiased predictors a + BX
and ‘=" only if Y = a+ BX (unbiased: E[Y —a—_BX] =0).
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Prediction variance/mean square prediction error Proof of BLUP
Fact: .
Cov]Y = Y,CX]=0 forall C. (1)
Thus Cov[Y — ¥, ¥] = 0 which implies By (1), Cov[Y — Y, CX] = 0 for all C.
VarY = Cov(Y, ¥) = ZyxZ3 xy Var[Y — (a4 BX)] = Var[Y — Y] + Var[Y — (a+ BX)]+

Cov[Y = Y, Y — (a+ BX)] + Cov[Y — (a+ BX),Y — Y] =

It follows that mean square prediction error is R R
Var[Y — Y] + Var[Y — (a + BX)]

Var[Y — Y] = VarY + VarY — 2Cov(Y, ¥) = £y — Zyx T Txy

Hence Var[Y — (a + BX)] — Var[Y — Y] = Var[Y — (a + BX)]
Proof of fact: where right hand side is positive semi-definite.

Cov]Y — Y, CX] = Cov[Y, CX] — Cov[Y, CX] =
TyxCl — Zyx I 'EZxCT =0
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TBLUP as projection Conditional distribution in multivariate normal distribution

. . . . Consider jointly normal random vectors Y and X with mean vector
Y scalar for consistency with slide on L space view.

X = (X,...,X,)". Assume wlog that all variables are centered 1= (py, 1ix)
EY = EX; = 0 (otherwise consider prediction of Y —EY based on
Xi —EX;). and covariance matrix

. o ) Xy Xyx
BLUP is projection of Y onto linear subspace spanned by Y= [ZXY Ty ]
Xi, ..., Xp (with orthonormal basis Uy, ..., U, where
U= Z)_(l/zX): Then (provided Xx invertible)

R . Y[X =x~ N(uy + Zyx Ty (x — 11x), Ty — TyxTx' Txy)
Yy = ZE[YU;] Ui = Tyx I X

i=1 Proof: By BLUP
Y=Y+R
(analogue to least squares). N L
where Y = py + Zyxz;(X(X — /Lx),
NB: conditional expectation E[Y|X] projection of Y onto space of R=Y-Y~NQOZXy- zYXz>_<IZXY) and CO‘A’(RaX) =0. By
all variables Z = f(X1,..., X,) where f real function. normality R is independent of X. Given X = x, Y is constant and

distribution of R is not affected. Thus result follows.
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Optimal prediction for jointly normal random vectors Conditional simulation using prediction

Suppose Y and X are jointly normal and we wish to simulate
Y|X = x. By previous result

YIX=x~§+R

~ 1 .
By previous result it follows that BLUP of Y given X coincides where § = py + Lyx Xy (x — pux). We thus need to simulate R.
with E[Y|X] when (X, Y) jointly normal. This can be done by ‘simulated prediction’: simulate (Y*, X*) and

compute Y* and R* = Y* — Y*.

Hence for normally distributed (X, Y), BLUP is optimal prediction.
Then our conditional simulation is

g+R

Advantageous if it is easier to simulate (Y*, X*) and compute Y*
than simulate directly from conditional distribution of Y|X = x

(e.g. if simulation of (Y, X) easy but Xy — Zyxz)?l):xy difficult)
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Prediction in linear mixed model

Let U ~ N(0, V) and Y|U = u~ N(XB + Zu,¥).
Then Cov[U, Y] = WZT and VarY = V = ZVZT 4+ ¥

Thus
U=E[UY]=wvZTV (Y - X}p)

NB: by Woodbury
wZT(zvZT + )y 1= (w14 2Ty 7)1 7Tyt
- e.g. useful if V=1 is sparse (like AR-model).
Similarly
Var[U—0] = Var[U|Y] = v—wZTv1ZzyT — (14775 17)7!

One-way anova example at p. 186 in M & T.
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TBLUP as hierarchical likelihood estimates

Maximization of joint density (‘hierarchical likelihood")

f(ylu; B)f (u; )

with respect to u gives BLUP (M & T p. 171-172 for one-way
anova and p. 183 for general linear mixed model)

Joint maximization wrt. u and 3 gives HendeArson's mixed-model
equations (M & T p. 184) leading to BLUE /5 and BLUP 4.
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IQ example

Y measurement of /Q, U subject specific random effect:

Y=p+U+e

where standard deviation of U and € are 15 and 5 and p = 100.

Given Y =130, E[p + U|Y = 130] = 127.

Example of shrinkage to the mean.

BLUP of mixed effect with unknown

Assume EX = C5 and EY = Dfj. Given X and 3, BLUP of

K = AB+ BY

K(B)=AB+BY(p)
where BLUP Y/(8) = DS + Zyx I, (X — CB).

Typically 8 is unknown. Then BLUP is
K=A3+BY(H)

where 3 is BLUE (Harville, 1991)
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Proof: K(8) can be rewritten as EBLUP and EBLUE
AB+BY(8) = [A+BD—BE yxZ C]B+BEyxI ' X = T+BIyx X' X

Note BLUE of T = [A+ BD — BXyxXy'C]B is

T =[A+BD - BLyx¥;'C]3.

Now consider a LUP K = HX = [H — BEyxZ 11X + BEyx X' X

. Typically covariance matrix depends on unknown parameters.
of K. By unbiasedness,

F— [H— BZYXZ’:l]X EBLUPS are obtained by replacing unknown variance parameters
X by their estimates (similar for EBLUE).

is LUE of T. Hence Var[T — T] > Var[T — T]. Also note by (1)
Cov[T — T,K(B8) — K] =0 and Cov[T — T,K(8) — K] =0
Using this it follows that
Var[K — K] > Var[K — K]

Hint: subtract and add K(3) both in Var[K — K] and Var[K — K].
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Model assessment Example: prediction of random intercepts and slopes in
orthodont data

ort7=lmer (distance”age+factor(Sex)+(1|Subject) ,data=0rthod«

Make histograms, qqg-plots etc. for EBLUPs of ¢ and U. #check of model ort7
#residuals
May be advantageous to consider standardized EBLUPS. res=residuals(ort7)
Standardized BLUP is qgnorm(res)
gqline(res)
[Cov0]~Y/20 #outliers occur for subjects MO9 and M13

#plot residuals against subjects
boxplot (resort~0rthodont$Subject)
#plot residuals against fitted values
fitted=fitted(ort7)

plot(rank(fitted) ,resort)
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#extract predictions of random intercepts
raneffects=ranef (ort7)

#qqplot of random intercepts
qqnorm(ranint [[1]])

gqqline(ranint[[1]])

#plot for subject MO9
M09=0Orthodont$Subject=="M09"

plot (Orthodont$age [MO9] ,fitted [MO9],type="1",ylim=c(20,32).

points(Orthodont$age [MO9] ,0rthodont$distance [MO9])
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Example: quantitative genetics (Sorensen and
Waagepetersen 2003)

Xij size of jth litter of ith pig.

Histogram Pedigree
X
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Normal -G Plot

| |
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\

Tesesouates  omomssemn

Ui, U; random genetic effects influencing size and variability of Xj;:

Xi|U; = uj, U; = G ~ N (pj + uj, exp(fi; + i)

(Ut,...,Up, Or,...,0,) ~ N, G® A)

A: additive genetic relationship (correlation) matrix (depending on
pedigree). Correlation structure derived from simple model:

1
Uoffspring = E(Ufather + Umother) +e€

= Q = A~1 sparse | (generalization of AR(1))

2 -
c=[ A ]

pPOLO G oG

p: coefficient of genetic correlation between U; and U;.
NB: high dimension n > 6000.

Aim: identify pigs with favorable genetic effects
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Exercises

1. Fill in the details of the proof on slide 21.

2. Verify the results on page 186 in M&T regarding BLUPs in
case of a one-way anova.

3. Consider slides 15-16 and the special case of the hidden AR(1)
model from the second miniproject. Explain how you can do
conditional simulation of the hidden AR(1) process U given
the observed data Y using 1) conditional simulation using
prediction 2) the expressions for the conditional mean and
covariance (cf. slide 14). Try to implement the solutions in R.
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