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Outline:

1. conditional independence

2. sparseness and conditional independence for multivariate
normal distributions

3. the Kalman filter (and smoother)
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Sparseness and prediction - computational strategies

Consider prediction of U given Y . A computational challenge is to
handle the inverse of CovY = ZΨZT + Σ.

Using sparse matrix Cholesky as in miniproject is one solution.

Another solution: exploit conditional independence implied by
sparseness ⇒ Kalman filter.
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Conditional independence

Suppose X ,Y ,Z are random variables (or vectors). Then we
define X and Y to be conditionally independent given Z if

p(x , y |z) = p(x |z)p(y |z)

The following statements are equivalent:

1. p(x , y |z) = p(x |z)p(y |z)

2. p(x , y , z) = f (x , z)g(y , z) for some functions f and g

3. p(x |y , z) = p(x |z)

4. p(y |x , z) = p(y |z)

(p(·) generic notation for (possibly conditional) probability
densities)
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Suppose X ∼ N(µ,Σ) with precision matrix Q = Σ−1.

Then Xi and Xj conditionally independent given X−{i ,j} ⇔
Qij = 0. This follows from decomposition

(x − µ)TQ(x − µ) =(xi − µi )2Qii + 2
∑
k 6=i

(xi − µi )(xk − µk)Qik

+
∑
l ,k:

l 6=i ,k 6=i

(xl−µl)(xk−µk)Qlk

Note that xi not in last term and Qij = Qji = 0 implies xj not in
first term. Thus we obtain factorization of density of X :

p(x) = f (xi , x−{i ,j})g(xj , x−{i ,j})

In particular, if Q is sparse, a lot of Xi ,Xj will be conditionally
independent given the remaining variables.
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Unnormalized density

To specify a probability density it is enough to specify an
unnormalized density h(·):

f (x) ∝ h(x)⇔ f (x) = h(x)/c

where normalizing constant c uniquely determined by:∫
f (x)dx = 1⇔

∫
h(x)/cdx = 1⇔ c =

∫
h(x)dx

For example if X has density proportional to

h(x) = ax−1 exp(−bx), a, b > 0

we know that X has a Gamma distribution.
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Conditional distribution of Xi

By previous slide

p(xi |x−i ) ∝ exp(−1

2
(xi − µi )2Qii −

∑
k 6=i

(xi − µi )(xk − µk)Qik)

Note for a normal distribution Y ∼ N(ξ, σ2),

p(y) ∝ exp(− 1

2σ2
y2 +

1

σ2
yξ)

Comparing the two above equations we get

Xi |X−i = x−i ∼ N(µi −
1

Qii

∑
k 6=i

Qik(xk − µk),Q−1ii )

Again we see that Qij = Qji = 0 ⇔ Xi conditionally independent
of Xj given X−{i ,j}.

Looking at bivariate distribution of (Xi ,Xj) given X−{i ,j} shows
that the conditional (partial) correlation is

Corr[Xi ,Xj |X−i ,j ] = −Qij/
√
QiiQjj
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A state-space model
Special case of linear mixed model:

U1 ∼ N(µ1,Φ1)

Ui = GUi−1 + Wi ,Wi ∼ N(0,Φ)

Yi = FUi + Vi ,Vi ∼ N(0,Σ)

U1, Wi , Vi all independent random vectors.

This is equivalent to U1 ∼ N(µ1,Φ1) and for i = 2, 3, . . .

Ui |U1 = u1, . . . ,Ui−1 = ui−1,Y1 = y1, . . . ,Yi−1 = yi−1 ∼ N(Gui−1,Φ)

Yi |U1 = u1, . . . ,Ui = ui ,Y1 = y1, . . . ,Yi−1 = yi−1 ∼ N(Fui ,Σ)

By factorization of joint density it follows that
(U1, . . . ,Ui−1,Y1, . . . ,Yi−1), Yi and (Ui+1, . . . ,Un,Yi+1, . . . ,Yn)
are conditionally independent given Ui .

‘past is independent of future given present state Ui ’
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Conditional independence graph

Conditional independences conveniently summarized by graph
(edges correspond to equations defining model):

U_1 U_2 U_3 U_4

Y_1 Y_2 Y_3 Y_4

Two variables not joined by an edge iff they are conditionally
independent given rest.

If two sets of variables are separated by a third set, then the two
sets are independent given the third set.
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The filtering problem

- is to predict Un given Y1:n.

I.e. we need to compute the normal distribution of Un given Y1:n.

The Kalman filter is a recursive algorithm for doing this.

We denote ûn−1 and Σn−1 the conditional mean and variance
matrix of Un−1 given y1:(n−1). I.e.

Un−1|Y1:(n−1) = y1:(n−1) ∼ N(ûn−1,Σn−1)

(solution of filtering problem at ‘time’ n − 1)
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Useful observation I: ‘a conditional density is just another
probability density’

Consider X ,Y given Z = z with conditional densities f (x |z),
f (y |z) and f (x , y |z).

We can rename for a moment g(x) = f (x |z), g(y) = f (y |z),
g(x , y) = f (x , y |z). Then g(x), g(y) and g(x , y) just like ordinary
probability densities (but in the ‘world’ where Z = z)

In other words, if (X ,Y )|Z = z has density/distribution g(x , y)
then

g(x) =

∫
g(x , y)dy and g(x |y) =

g(x , y)

g(y)

density of X given Z respectively X given Y and Z .

Apologies for using sloppy g(x), g(y),... notation.
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Useful observation II: from conditional distribution to
marginal distribution

Suppose Y |X = x ∼ N(c + Ax ,V ) and X ∼ N(µ,Σ). Then[
X
Y

]
∼ N

([
µ

c + Aµ

]
,

[
Σ ΣAT

AΣ AΣAT + V

])
.

Note: from this and previous useful observation we immediately get

Un|y1:(n−1) ∼ N(Gûn−1,GΣn−1G
T + Φ)
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Quick derivation of Kalman filter

Assume we have computed in previous step ûn−1 and Σn−1
(recursion).

Since
Un|y1:(n−1) ∼ N(Gûn−1,GΣn−1G

T + Φ)

and (by conditional independence)

Yn|un, y1:n−1 ∼ Yn|un ∼ N(Fun,Σ)

we get by useful observation II that joint distribution of
(Un,Yn)|y1:(n−1) is

N

([
Gûn−1
FGûn−1

]
,

[
Rn RnF

T

FRn FRnF
T + Σ

])
where Rn = GΣn−1G

T + Φ.
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By useful observation I we obtain Un|y1:n ∼ Un|y1:(n−1), yn as the
conditional distribution of Un given Yn = yn derived from the
above normal distribution of (Un,Yn) given Y1:(n−1) = y1:(n−1)).

Hence Un|y1:n is normal with mean and variance

ûn = Gûn−1 + RnF
T(FRnF

T + Σ)−1(yn − FGûn−1)

Σn = Rn − RnF
T(FRnF

T + Σ)−1FRn
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Kalman smoother

Suppose we want to compute conditional distribution of Ui given
Y1:n. This can be done by another recursion backwards in time
starting with Un given Y1:n which we know by now.

Assume that we know (recursion) Ui+1|y1:n ∼ N(ũi+1, Σ̃i+1).

We want to compute distribution of Ui |y1:n. Condition on Ui+1

and use conditional independence:

Ui |ui+1, y1:n ∼ Ui |ui+1, y1:i
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The conditional distribution Ui |ui+1, y1:i can be derived from the
joint distribution (Ui ,Ui+1)|y1:i which using Kalman filter and
useful observation II is

N

([
ûi
Gûi

]
,

[
Σi ΣiG

T

GΣi Ri

])
.

From this we obtain

Ui |ui+1, y1:n ∼ Ui |ui+1, y1:i ∼ N(ûi + Ci (ui+1 − Gûi ),Hi )

(with Ci = ΣiG
TR−1i and Hi = Σi − ΣiG

TR−1i GΣi ).

Combining this with Ui+1|y1:n ∼ N(ũi+1, Σ̃i+1) we get the desired
smoother distribution for Ui :

Ui |y1:n ∼ N(ûi + Ci (ũi+1 − Gûi ),Ci Σ̃i+1C
T
i + Hi )

We can now work our way backward in time.
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Kalman versus sparse matrix methods

Kalman filter heavily exploits conditional independence of future
and past given current state.

Hence restricted to time-series/dynamic models.

Methods based on sparse matrix Cholesky (Miniproject 2) work in
any setting with sparse precision matrix for latent Gaussian process.
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Exercises

1. show the equivalence of 1.-4. on slide 3.

2. verify the expression for the conditional distribution of Xi on
slide 6.

3. check the result regarding the conditional correlation between
Xi and Xj below on slide 6.

4. Show that the following three specifications are equivalent:

4.1 Y |X = x ∼ N(c + Ax ,V ) and X ∼ N(µ,Σ)
4.2 [

X
Y

]
∼ N

([
µ

c + Aµ

]
,

[
Σ ΣAT

AΣ AΣAT + V

])
4.3 X ∼ N(µ,Σ) and Y = c + AX + ε where ε ∼ N(0,V ) is

independent of X .

(hint: use characteristic function, cf. first lecture)

5. Make an R-implementation of the Kalman filter and smoother
for the AR(1)+noise model.
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