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Outline:
1. conditional independence

2. sparseness and conditional independence for multivariate
normal distributions

3. the Kalman filter (and smoother)
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Sparseness and prediction - computational strategies

Consider prediction of U given Y. A computational challenge is to
handle the inverse of CovY = ZWZT + ¥.

Using sparse matrix Cholesky as in miniproject is one solution.

Another solution: exploit conditional independence implied by
sparseness = Kalman filter.
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Conditional independence

Suppose X, Y, Z are random variables (or vectors). Then we
define X and Y to be conditionally independent given Z if

p(x;y|z) = p(x|2)p(y|2)

The following statements are equivalent:

1. p(x,ylz) = p(x|z)p(y|2)

2. p(x,y,z) = f(x,z)g(y,z) for some functions f and g
3. p(xly,z) = p(x|2)

4. p(ylx,z) = p(ylz)

(p(-) generic notation for (possibly conditional) probability
densities)
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Suppose X ~ N(u, X) with precision matrix Q@ = ¥~ 1.

Then X; and X; conditionally independent given X_; <
Qjj = 0. This follows from decomposition

(x = )" Q(x — p) =

(i — 1) Qi +2 ) (x5 — 1) (xk — 1) Qi +Z x1= 1) (Xke— pi) Qi
K
7 Wi

Note that x; not in last term and Q;; = Q;;i = 0 implies x; not in
first term. Thus we obtain factorization of density of X:

p(x) = f(xi, x_{i )8 (X X_{i jy)

In particular, if Q is sparse, a lot of Xj, X; will be conditionally
independent given the remaining variables.
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Unnormalized density

To specify a probability density it is enough to specify an
unnormalized density h(-):

f(x) x h(x) < f(x) = h(x)/c

where normalizing constant ¢ uniquely determined by:

/f(x)dx:1@/h(x)/cd><:1<:>c:/h(x)dx

For example if X has density proportional to
h(x) = & Yexp(—bx), a,b>0

we know that X has a Gamma distribution.
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Conditional distribution of X;
By previous slide

1
plxilx-i) oc exp(—7 (xi — pi)? Qi = > (xi — 1) (X — 1) Qi)
ki

Note for a normal distribution Y ~ N(¢, 0?),
1, 1
ply) ccexp(—5—5y" + —5¥¢)

Comparing the two above equations we get
Xi| X_i = x_j ~ N(u -0 ZQIk ), Q7%)
n

Again we see that Q; = Qji = 0 < X; conditionally independent
of X given X_¢; jy.

Looking at bivariate distribution of (Xj, Xj) given X_y; ;; shows
that the conditional (partial) correlation is

Corr[X;, Xj| X_i ] = —Qu/m
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A state-space model
Special case of linear mixed model:
Up ~ N(p1, ®1)
Ui = GUj—1 + W;, W; ~ N(0, ®)
Yi=FUi + V;,V; ~ N(0, %)

Ui, W;, V; all independent random vectors.

This is equivalent to Uy ~ N(p1,®1) and for i =2,3,...

Ul =u1,... Uit =uio1, Yi = y1,.. 0, Yier = yic1 ~ N(Guj—1, ®)
Yilbi = u,...,Ui=u;,Yr=y1,...,Yie1 = yi-1 ~ N(Fu;, X)

By factorization of joint density it follows that
(Ul, PN U,',l, Yl, PPN Y,',l), Y, and (UiJr]_, PN U,,, Y,'+1, ey Y,,)
are conditionally independent given U;.

‘past is independent of future given present state U;'
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Conditional independence graph

Conditional independences conveniently summarized by graph
(edges correspond to equations defining model):

cos

Two variables not joined by an edge iff they are conditionally
independent given rest.

If two sets of variables are separated by a third set, then the two
sets are independent given the third set.
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The filtering problem

- is to predict U, given Y1.p.
l.e. we need to compute the normal distribution of U, given Yi.,.
The Kalman filter is a recursive algorithm for doing this.

We denote i,-1 and X ,_1 the conditional mean and variance
matrix of U,—1 given y1.(,—1). l.e.

Un—llyl:(nfl) = Y1:(n-1) ~ N(ﬁn—la Zn—l)

(solution of filtering problem at ‘time’ n— 1)
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Useful observation |: ‘a conditional density is just another
probability density’

Consider X, Y given Z = z with conditional densities f(x|z),
f(yl2) and F(x, y[2).

We can rename for a moment g(x) = f(x|z), g(y) = f(y|z),

g(x,y) = f(x,y|z). Then g(x), g(y) and g(x, y) just like ordinary
probability densities (but in the ‘world’” where Z = z)

In other words, if (X, Y)|Z = z has density/distribution g(x, y)

then
g(x) = / g(x,y)dy and g(xly) = gé_)((’yg)

density of X given Z respectively X given Y and Z.

Apologies for using sloppy g(x), g(y),... notation.
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Useful observation |l: from conditional distribution to
marginal distribution

Suppose Y|X = x ~ N(c+ Ax, V) and X ~ N(u,X). Then

Aol fa) L )

Note: from this and previous useful observation we immediately get

Unly1:(n-1) ~ N(Glin—1, GXp-1G' + ®)
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Quick derivation of Kalman filter

Assume we have computed in previous step {i,_1 and X ,_1
(recursion).

Since
Un‘ylz(n—l) ~ N(Gan—la GXp1 G' + CD)

and (by conditional independence)
Yn|una)/1:nfl ~ Yn|Un ~ N(Fun,Z)

we get by useful observation Il that joint distribution of
(Unv Yn)‘ylz(nfl) is

N Giip_1 R, R,FT
FGi,_1|’ |FR, FR,FT+X

where R, = GYX,,_1GT + &.
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By useful observation | we obtain Up|y1:n ~ Unly1.(n-1), ¥n as the
conditional distribution of U, given Y, = y, derived from the
above normal distribution of (Uy, Y,) given Y1.(n—1) = Y1:(n—1))-

Hence Up|y1:n is normal with mean and variance

Op = Giip_1 4+ RyFT(FR,FT + ) Yy, — FGiip_1)
Y, =Ry— R.FT(FR,FT + X)71FR,
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Kalman smoother

Suppose we want to compute conditional distribution of U; given
Y1:.n. This can be done by another recursion backwards in time
starting with U, given Y7i., which we know by now.

Assume that we know (recursion) Uiy1|y1:n ~ N(@it1, Xit1).

We want to compute distribution of U;|y1.,. Condition on U1
and use conditional independence:

Uiluis1, y1:n ~ Uiluiza, yr:i
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The conditional distribution U;|uj11, y1.; can be derived from the
joint distribution (U;, Uit+1)|y1.; which using Kalman filter and
useful observation Il is

N 0; Y, Y,GT
Giij| ' |GL; R; )
From this we obtain

Uiluis1, y1:n ~ Uiluitt, y1.i ~ N(G; + Ci(ujiy1 — Gij), H;)

(with GG = ,GTR  and H; = L; — L;GTR1GY)).

Combining this with Ujy1|y1:n ~ N(djt1,Xi1+1) we get the desired
smoother distribution for U;:

Uilyr:n ~ N(8; + Ci(dip1 — Giip), GEi41 G + Hi)
We can now work our way backward in time.
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Kalman versus sparse matrix methods

Kalman filter heavily exploits conditional independence of future
and past given current state.

Hence restricted to time-series/dynamic models.

Methods based on sparse matrix Cholesky (Miniproject 2) work in
any setting with sparse precision matrix for latent Gaussian process.
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Exercises

1. show the equivalence of 1.-4. on slide 3.

2. verify the expression for the conditional distribution of X; on
slide 6.

3. check the result regarding the conditional correlation between
Xi and X; below on slide 6.

4. Show that the following three specifications are equivalent:
41 Y| X =x~ N(c+ Ax,V)and X ~ N(p, X)

m ~ N (L fA;J ’ [AZZ Az%\i VD

43 X ~ N(u,X)and Y = c+ AX + € where ¢ ~ N(0, V) is
independent of X.

(hint: use characteristic function, cf. first lecture)

5. Make an R-implementation of the Kalman filter and smoother
for the AR(1)+noise model.
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