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Understanding the Kalman Filter 
RICHARD J. MEINHOLD and NOZER D. SINGPURWALLA* 

This is an expository article. Here we show how the 
successfully used Kalman filter, popular with control 
engineers and other scientists, can be easily understood 
by statisticians if we use a Bayesian formulation and 
some well-known results in multivariate statistics. We 
also give a simple example illustrating the use of the 
Kalman filter for quality control work. 

KEY WORDS: Bayesian inference; Box-Jenkins mod- 
els; Forecasting; Exponential smoothing; Multivariate 
normal distribution; Time series. 

1. INTRODUCTION 

The Kalman filter (KF) commonly employed by con- 
trol engineers and other physical scientists has been 
successfully used in such diverse areas as the processing 
of signals in aerospace tracking and underwater sonar, 
and the statistical control of quality. More recently, it 
has also been used in some nonengineering applications 
such as short-term forecasting and the analysis of life 
lengths from dose-response experiments. Un-
fortunately, much of the published literature on the KF 
is in the engineering journals (including the original 
development, in Kalman 1960 and Kalman and Bucy 
1961), and uses a language, notation, and style that is 
alien to statisticians. Consequently, many practitioners 
of statistics are not aware of the simplicity of this useful 
methodology. However, the model, the notions, and 
the techniques of Kalman filtering are potentially of 
great interest to statisticians owing to their similarity to 
linear models of regression and time series analysis, and 
because of their great utility in applications. 

In actuality, the KF may be easily understood by the 
statistician if it is cast as a problem in Bayesian infer- 
ence and we employ some well-known elementary re- 
sults in multivariate statistics. This feature was evi-
dently first published by Harrison and Stevens (1971, 
1976), who were primarily interested in Bayesian fore- 
casting. However, the particular result presented by 
them is in a nontutorial manner, with emphasis placed 
on the implementation of the KF. Our aim, on the other 
hand, is to provide an exposition of the key notions of 
the approach in a single source, laying out its derivation 
in a few easy steps, filling in some clarifying technical 

details, giving an example, and giving an interpretation 
of results. A more mathematical discussion of the KF 
emphasizing the stochastic differential equation ap- 
proach is given by Wegman (1982). We feel that once it 
is demystified, the KF will be used more often by ap- 
plied statisticians. 

2. THE KALMAN FILTER MODEL: 
MOTIVATION AND APPLICATIONS 

Let Y,, Y,-,, . . . ,Y,, the data (which may be either 
scalars or vectors), denote the observed values of a 
variable of interest at times t ,  t - 1 , .  . . , l .  We assume 
that Y, depends on an unobservable quantity 0,, known 
as the state of nature. Our aim is to make inferences 
about 0,, which may be either a scalar or a vector and 
whose dimension is independent of the dimension of Y, . 
The relationship between Y, and 0, is linear and is speci- 
fied by the observation equation 

where F, is a known quantity. The observation error v, 
is assumed to be normally distributed with mean zero 
and a known variance V,, denoted as v, -N(0, V,). 

The essential difference between the KF and the con- 
ventional linear model representation is that in the 
former, the state of nature-analogous to the re-
gression coefficients of the latter-is not assumed to be 
a constant but may change with time. This dynamic 
feature is incorporated via the system equation, wherein 

G, being a known quantity, and the system equation 
error w, -N(0, W,), with W, known. Since there are 
many physical systems for which the state of nature 0, 
changes over time according to a relationship pre- 
scribed by engineering or scientific principles, the abili- 
ty to include a knowledge of the system behavior in the 
statistical model is an apparent source of attractiveness 
of the KF. Note that the relationships (2.1) and (2.2) 
specified through F,and G, may or may not change with 
time, as is also true of the variances V, and W,; we have 
subscripted these here for the sake of generality. 

In addition to the usual linear model assumptions 
regarding the error terms, we also postulate that v, is 
independent of w,; while extension to the case of de- 
pendency is straightforward, there is no need in this 
article to do so. 
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could be the position and speed of the satellite at time 
t ,  with respect to a spherical coordinate system with 
origin at the center of the earth. These quantities can- 
not be measured directly. Instead, from tracking sta- 
tions around the earth, we may obtain measurements of 
distance to the satellite and the accompanying angles of 
measurement; these are the Y,'s. The principles of ge- 
ometry, mapping Y, into 0,, would be incorporated in 
F,, while v, would reflect the measurement error; G, 
would prescribe how the position and speed change in 
time according to the physical laws governing orbiting 
bodies, while w, would allow for deviations from these 
laws owing to such factors as nonuniformity of the 
earth's gravitational field, and so on. 

A less complicated situation is considered by Phadke 
(1981) in the context of statistical quality control. Here 
the observation Y, is a simple (approximately normal) 
transform of the number of defectives observed in a 
sample obtained at time t ,  while 8,,, and 02,, represent, 
respectively, the true defective index of the process and 
thedrift of this index. We then have as the bbservation 
equation 

and as the system equations 

In vector notation, this system of equations becomes 

where 

does not change with time. 

If we examine Y, - Y,-I for this model, we observe 
that, under the assumption of constant variances, name- 
ly, V, = V and W, = W, the autocorrelation structure of 
this difference is identical to that of an ARZMA (0,1,1) 
process in the sense of Box and Jenkins (1970). Al- 
though such a correspondence is sometimes easily dis- 
cernible, we should in general not, because of the dis- 
crepancies in the philosophies and methodologies in- 
volved, consider the two approaches to be equivalent. 

3. THE RECURSIVE ESTIMATION PROCEDURE 

The term "Kalman filter" or "Kalman filtering" re- 
fers to a recursive procedure for inference about the 
state of nature 0,. The key notion here is that given the 
data Y, = (Y,, . . . ,Y1), inference about 0, can be carried 
out through a direct application of Bayes's theorem: 

Prob{State of Nature I Data} 

Prob{Data I State of Nature) 

x Prob{State of Nature), (3.1) 

which can also be written as 

~ ( 0 ,I y,)  a P(Y, I el, y , - ~ )  Ix ~ ( 0 ,Y,-~) ,  (3.2) 

where the notation P(A I B )  denotes the probability of 
occurrence of event A given that (or conditional on) 
event B has occurred. Note that the expression on the 
left side of (3.2) denotes the posterior distribution for 0 
at time t ,  whereas the first and second expressions on 
the right side denote the likelihood and the prior distri- 
bution for 0, respectively. 

The recursive procedure can best be explained if we 
focus attention on time point t - 1, t = 1,2, .  . . ,and the 
observed data until then, Y,-, = (Y,-,, Y,-,, . . . ,Y1). In 
what follows, we use matrix manipulations in allowing 
for Y and/or 0 to be vectors, without explicitly noting 
them as such. 

At t - 1, our state of knowledge about 8,-, is em- 
bodied in the following probability statement for @,-,: 

where and Z,-I are the expectation and the variance 
of (Or-, I Y,-,). In effect, (3.3) represents the posterior 
distribution of 0,-,; its evolution will become clear in the 
subsequent text. 

It is helpful to remark here that the recursive pro- 
cedure is started off at time 0 by choosing 80and Zo to 
be our best guesses about the mean and the variance of 
00, respectively. 

We now look forward to time t ,  but in two stages: 

1. prior to observing Y,, and 
2. after observing Y,. 

Stage 1. Prior to observing Y,, our best choice for 0, 
is governed by the system equation (2.2) and is given as 
G,O,-l + w, . Since Or-, is described by (3.3), our state of 
knowledge about 0, is embodied in the probability 
statement 

this is our prior distribution. 
In obtaining (3.4), which represents our prior for 0, in 

the next cycle of (3.2), we used the well-known result 
that for any constant C 

X -N(p ,  2 )  3 CX -N(Cp ,  CCC'),  

where C '  denotes the transpose of C .  

Stage 2.  On observing Y,, our goal is to compute the 
posterior of 0, using (3.2). However, to do this, we need 
to know the likelihood Y(0,(Y,), or equivalently 
P(Y, (O,, Y,-,), the determination of which is under- 
taken via the following arguments. 

Let el denote the error in predicting Y, from the point 
t - 1; thus 

Since F,, G,, and 8,-, are all known, observing Y, is 
equivalent to observing el. Thus (3.2) can be rewritten 
as 
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with P(e, ( 0,, Y,-l) being the likelihood. 
Using the fact that Y, = F,O, + v,, (3.5) can be written 

as e l =  F,(O, - G , ~ , - ~ ) + V , ,  so that E(e,(O,, Y,-l)= 
F, (01 - G10,-1). 

Since v, -N(0, V,), it follows that the likelihood is 
described by 

We can now use Bayes's theorem (Eq. (3.6)) to 
obtain 

and this best describes our state of knowledge about 0, 
at time t .  Once P(0, ( Y,, Y,-l) is computed, we can go 
back to (3.3) for the next cycle of the recursive pro- 
cedure. In the next section, we show that the posterior 
distribution of (3.8) is of the form presented in (3.3). 

4. DETERMINATION OF THE 
POSTERIOR DISTRIBUTION 

The tedious effort required to obtain P(0 , )  Y,) using 
(3.8) can be avoided if we make use of the following 
well-known result in multivariate statistics (Anderson 
1958, pp. 28-29), and some standard properties of the 
normal distribution. 

Let Xl and X2 have a bivariate normal distribution 
with means p1 and p2, respectively, and a covariance 
matrix 

we denote this by 

When (4.1) holds, the conditional distribution of Xl 
given X2 is described by 

The quantity p1+ C12CG1(x2- k2) is called the re-
gression function, and C12C&lis referred to as the coeffi- 
cient of the least squares regression of Xl on x2. 

As a converse to the relationship (4.1) implies (4.2), 
we have the result that whenever (4.2) holds, and when 
X2- N(p2, &), then (4.1) will hold; we will use this 
converse relationship. 

For our situation, we suppress the conditioning vari- 
ables Y,-l and let Xl correspond to el, and X2 corre- 
spond to 0,; we denote this correspondence by Xl -ael 
and X2 @ 0,. Since (0,) Y,-l) -~ ( ~ , 8 , - 1 ,R,) (see (3.4)), 
we note that 

and 

If in (4.2) we replace XI,  X2, p2, and C22 by el, O,, ~ 1 8 1 - ~ ,  
and R,, respectively, and recall the result that (el )8, ,  
yl-J -N(F,(O, - G,~ , - I ) ,  V,) (Eq. (3.7)), then 

P-1 + C12Rt-I (0, - ~rer-1)  e ~ r ( o r  - ~ t e r - I ) ,  

so that pl@O and C12@ FrRr; similarly, 

C11 -C12CG1C21= 211  - FtRrF: Vt 

so that Cll V, + FtR,F: . 
We now invoke the converse relation mentioned pre- 

viously to conclude that the joint distribution of 0, and 
e,, given Y,- can be described as 

Making el the conditioning variable and identifying 
(4.3) with (4.1), we obtain via (4.2) the result that 

This is the desired posterior distribution. We now sum- 
marize to highlight the elements of the recursive pro- 
cedure. 

After time t - 1, we had a posterior distribution for 
with mean 8,-1 and variance C,-l (Eq. (3.3)). 

Forming a prior for 0, with mean ~ , 8 , - ~and variance 
R, = G,C,-lG: + W, (Eq. (3.4)) and evaluating a like- 
lihood given e, = Y,  -F,G,~,-,(Eq. (3.5)), we arrive at 
the posterior density for 0,; this has mean 

8, = ~ , 8 , - ~  	 (4.5)+ R,F: (V, + F,R,F: )-'el 

and variance 

2, = R, -R,F: (V, + F,R,F: )-'F,R,. (4.6) 

We now continue through the next cycle of the process. 

5. 	INTERPRETATION OF RESULTS AND 
CONCLUDING REMARKS 

If we look at (4.4) for obtaining some additional in- 
sight into the workings of the Kalman filter, we note 
that the mean of t h e  posterior distribution of (0,l el, 
Y,-l) is indeed the regression function of 0, on e,. The 
mean (regression function) is the sum of two quantities 
~ , 8 , - ~ ,and a multiple of the one step ahead forecast 
error e, . 

We first remark that ~ , 8 , - 1  is the mean of the prior 
distribution of 0, (see (3.4)), and by comparing (4.3) 
and (4.4) to (4.1) and (4.2) we verify that the multiplier 
of e,, R,F: (V, + F,RJ;)-', is the coefficient of the least 
squares regression of 0, on el (conditional on Y,-l). Thus 
one way to view Kalman filtering is to think of it as an 
updating procedure that consists of forming a pre-
liminary (prior) guess about the state of nature and then 
adding a correction to this guess, the correction being 
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determined by how well the guess has performed in 
predicting the next observation. 

Second, we should clarify the meaning of regressing 
0, on e, since this pair constitutes but a single obser- 
vation and the regression relationship is not estimated 
in the familiar way. Rather, we recall the usual frame- 
work of sequential Bayesian estimation, wherein a new 
posterior distribution arises with each successive piece 
of data. At time zero, the regression of 81 on el is deter- 
mined entirely by our prior specifications. On receiving 
the first observation, the value of el is mapped into 8, 
through this function, which is then replaced by a new 
regression relation based on e l ,  Fl ,  G I ,  V1, and W1. This 
in turn is used to map e2into e2,and so on as the process 
continues in the usual Bayesian priorlposterior iterative 
manner; see Figure 1. Thus Kalman filtering can also be 
viewed as the evolution of a series of regression func- 
tions of 0, on el ,  at times 0,1, . . . ,t - 1, t ,  each having 
a potentially different intercept and regression coeffi- 
cient; the evolution stems from a learning process in- 
volving all the data. 

The original development of the Kalman filter ap- 
proach was motivated by the updating feature just de- 
scribed, and its derivation followed via the least squares 
estimation theory. The Bayesian formulation described 
here yields the same result in an elegant manner and 
additionally provides the attractive feature of enabling 
inference about 0, through a probability distribution 
rather than just a point estimate. 

6. ILLUSTRATIVE EXAMPLES 

6.1 The Steady Model 

We consider two examples to illustrate the preceding 
mechanism and its performance. 

regression function 

posterior to t and 


prior to t+l 


Regression function 

posterior to t-1 


and prior to t 


Figure 1. Regression of 0, on e ,  

We first return to the quality control model of Section 
2.1, simplified by the removal of the drift parameter. 
This yields 

Y,= 0, + v, (Obs. Eqn.) 

and (6.1) 

0, = 0,-I + w, (Sys. Eqn.). 

This is a simplest possible nontrivial KF model (some- 
times referred to in the forecasting literature as the 
steady model); it also corresponds, in the sense of pos- 
sessing the same autocorrelation structure (assuming 
constant variances), to a class of ARIMA (0, 1, 1) mod- 
els of Box and Jenkins (1970). In this situation, 
F, = G, = 1; if we further specified that Zo= 1, V, =2, 
W, = 1, we can easily demonstrate inductively that 
R, = G,Z,-,G: + W,=2 ,  and from (4.6), Z, = l .  In 
(4.5), then, our recursive relationship becomes 

A A 

0, = el-, + ;(Y, - el-,) 

Table 1. A Simulation of the Process Described in Section (6.2) 
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We see then that in this simple situation the KF esti-
mator of O f ,  and thus Y,,,, is actually equivalent to that 
derived from a form of exponential smoothing. 

6.2 A Numerical Example 

We present in Table 1a numerical example involving 
a simulation of the (scalar-dimensional) general model 
of (2.1) and (2.2). We continue to specify So= 1, V,=2, 
W ,  1, but incorpkrate cyclical behavior in 0, by setting 

while F, is in the nature of the familiar independent 
variable of ordinary regression. This situation clearly 
cannot be contained in any class of the ARZMA family; 
instead it is analogous, if not equivalent, to the transfer 
function model approach of Box and Jenkins (1970). 

Starting with a value for Bo, the disturbances v, and w, 
were generated from a table of random normal variates 
and used in turn to produce, via the system and obser- 
vation equations, the processes (0,) and {Y,),of which 
only the latter would ordinarily be visible. A "bad 
guess" value of gowas chosen; as can be seen in Figure 
2, where the actual values of 8, and their estimates 8, are 
plotted, the effect of this error is short-lived. The reader 
may find it conducive to a better understanding of the 
model to work through several iterations of the recur- 
sive procedure. 

[Received October 1981. Revised July 1982. ] 
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