Orthogonal projections

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

February 11, 2014

Orthogonal decomposition

Suppose L subspace of \mathbb{R}^n . Let $L^{\perp} = \{ v \in \mathbb{R}^n | v \bullet w = 0 \text{ for all } w \in L \}.$

Orthogonal decomposition: each $x \in \mathbb{R}^n$ has a unique decomposition

$$x = u + v$$

where $u \in L$ and $v \in L^{\perp}$.

Orthogonal projection: u and v above are the orthogonal projections $p_L(x)$ and $p_{L^{\perp}}(x)$ of x on respectively L and L^{\perp} .

Pythagoras:

$$||x||^2 = ||u||^2 + ||v||^2$$

Orthogonal projections

- ▶ the orthogonal projection $p_L : \mathbb{R}^n \to L$ on L is a linear mapping. It is thus given by a unique matrix-transformation $p_L(x) = Px$ where P is an $n \times n$ matrix.
- ▶ the projection matrix P is symmetric $(P^T = P)$ and idempotent $(P^2 = P)$
- conversely, if a matrix Q is symmetric, idempotent and L = col Q then Q is the matrix of the orthogonal projection on L.
- if $L = \operatorname{col} X$ and X full rank then $P = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$

Example: orthogonal projection on subspace spanned by a single vector v is $\frac{v^T x}{\|v\|^2} x$

Example: orthogonal projection on subspace spanned by a orthogonal vectors v_1, \ldots, v_p is $\sum_{i=1}^p \frac{v_i^\mathsf{T} x}{\|v_i\|^2} x$

Example: If P is matrix of orthogonal projection on L then I-P is matrix of orthogonal projection on L^{\perp}