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1 Model with AR(1) errors

Assume
Y ∼ N(Xβ, V ) (1)

where V is the covariance matrix of a zero-mean stationary AR(1) process
with parameters τ 2 and a (cf. handouts for lecture 2). Then V and V −1 have
factorizations

V = BCBT and V −1 = (B−1)TC−1B−1

where C is diagonal and B−1 is zero except for the diagonal and the entries
just below the diagonal. We can write C = τ 2D where τ 2 is the variance of
the innovations of the AR(1) process and D only depends on a. Let V = τ 2W
where W = BDBT. Let S = D−1/2B−1.

1. Show that Ỹ = SY ∼ N(X̃β, τ 2I) where X̃ = SX.

2. Show that the densities f and f̃ of Y and Ỹ are related by

f(y) = f̃(ỹ)|S|

3. Assume a is known. Argue that estimates of β and τ 2 based on the
likelihood of Y coincides with estimates based on the likelihood of Ỹ .

4. Write a piece of R code that for a given a produces the maximum like-
lihood estimates of β and τ 2 and returns the value of the log likelihood
function (hint: transform Y and X into Ỹ and X̃ and apply the lm()
function in R - see also example code)
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5. Simulate a data set from the model (1) and try out your code on this
to obtain maximum likelihood estimates of β, τ 2, a.

6. Conduct a simulation study to assess the distribution of the maximum
likelihood estimates when a = 0, a = 0.5 and a = 0.99. Try small
n = 20 and large n = 1000.

2 Model extended with independent noise (hid-

den Markov process)

We now extend the model (1) by adding independent normal errors each with
variance σ2. That is, we consider

Y ∼ N(Xβ, τ 2BDBT + σ2I). (2)

This corresponds to the general setting for which we developed maximum
likelihood (and restricted maximum likelihood) estimation on the handouts
for lecture 2. Note that in this case neither τ 2BDBT + σ2I nor its inverse
are sparse. Also I do not know how to obtain a square root of the inverse in
an efficient manner. However, we can still come up with a computationally
efficient implementation of maximum likelihood estimation.

Recall that Q = (BDBT)−1 is a sparse tri-diagonal matrix.

1. let φ = τ 2/σ2 and show that

(τ 2BDBT + σ2I)−1 = σ−2(φI +Q)−1Q

2. show that the determinant of |τ 2BDBT+σ2I| is σn2|φI+Q|/|Q| where
n is the dimension of Y .

3. one can compute (see accompanying R code) a Cholesky factorization
LLT of Q̃ = φI +Q. Show that the determinant of Q̃ is the product of
squared diagonal elements of L.

4. For a vector z computing Qz is of course straightforward. To compute
x = (φI + Q)−1z note that this is equivalent to solving the equation
(φI + Q)x = z. How can we apply the Cholesky factorization LLT

of the sparse matrix (φI + Q) to solve (φI + Q)x = z in an efficient
manner (recall L is lower triangular) ?
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5. Use the above results to implement maximum likelihood estimation of
β and σ2 given fixed values of a and φ. Next use this to implement
profile likelihood estimation of a and φ (see also example R code).

3 Inference for noise variance

Consider the electricity consumption-temperature data.

1. Fit the models from Section 1-2 with Y equal to the electricity con-
sumption andX the matrix with a first column of ones, a second column
given by the temperatures, and a third column given by the binary D
variable (weekday vs. weekend).

2. Conduct a likelihood ratio test for H0 : σ2 = 0. Use a parametric
bootstrap to approximate the distribution of the likelihood ratio under
H0.
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