Implementation of linear mixed model with AR(1) errors

Rasmus Waagepetersen

May 5, 2022

1 Model with AR(1) errors

Assume

$$
\begin{equation*}
Y \sim N(X \beta, V) \tag{1}
\end{equation*}
$$

where V is the covariance matrix of a zero-mean stationary $\mathrm{AR}(1)$ process with parameters τ^{2} and a (cf. handouts for lecture 2). Then V and V^{-1} have factorizations

$$
V=B C B^{\top} \quad \text { and } \quad V^{-1}=\left(B^{-1}\right)^{\top} C^{-1} B^{-1}
$$

where C is diagonal and B^{-1} is zero except for the diagonal and the entries just below the diagonal. We can write $C=\tau^{2} D$ where τ^{2} is the variance of the innovations of the $\operatorname{AR}(1)$ process and D only depends on a. Let $V=\tau^{2} W$ where $W=B D B^{\top}$. Let $S=D^{-1 / 2} B^{-1}$.

1. Show that $\tilde{Y}=S Y \sim N\left(\tilde{X} \beta, \tau^{2} I\right)$ where $\tilde{X}=S X$.
2. Show that the densities f and \tilde{f} of Y and \tilde{Y} are related by

$$
f(y)=\tilde{f}(\tilde{y})|S|
$$

3. Assume a is known. Argue that estimates of β and τ^{2} based on the likelihood of Y coincides with estimates based on the likelihood of \tilde{Y}.
4. Write a piece of R code that for a given a produces the maximum likelihood estimates of β and τ^{2} and returns the value of the log likelihood function (hint: transform Y and X into \tilde{Y} and \tilde{X} and apply the $\operatorname{lm}()$ function in R - see also example code)
5. Simulate a data set from the model (1) and try out your code on this to obtain maximum likelihood estimates of β, τ^{2}, a.
6. Conduct a simulation study to assess the distribution of the maximum likelihood estimates when $a=0, a=0.5$ and $a=0.99$. Try small $n=20$ and large $n=1000$.

2 Model extended with independent noise (hidden Markov process)

We now extend the model (1) by adding independent normal errors each with variance σ^{2}. That is, we consider

$$
\begin{equation*}
Y \sim N\left(X \beta, \tau^{2} B D B^{\top}+\sigma^{2} I\right) . \tag{2}
\end{equation*}
$$

This corresponds to the general setting for which we developed maximum likelihood (and restricted maximum likelihood) estimation on the handouts for lecture 2. Note that in this case neither $\tau^{2} B D B^{\top}+\sigma^{2} I$ nor its inverse are sparse. Also I do not know how to obtain a square root of the inverse in an efficient manner. However, we can still come up with a computationally efficient implementation of maximum likelihood estimation.

Recall that $Q=\left(B D B^{\boldsymbol{\top}}\right)^{-1}$ is a sparse tri-diagonal matrix.

1. let $\phi=\tau^{2} / \sigma^{2}$ and show that

$$
\left(\tau^{2} B D B^{\top}+\sigma^{2} I\right)^{-1}=\sigma^{-2}(\phi I+Q)^{-1} Q
$$

2. show that the determinant of $\left|\tau^{2} B D B^{\top}+\sigma^{2} I\right|$ is $\sigma^{n 2}|\phi I+Q| /|Q|$ where n is the dimension of Y.
3. one can compute (see accompanying R code) a Cholesky factorization $L L^{\top}$ of $\tilde{Q}=\phi I+Q$. Show that the determinant of \tilde{Q} is the product of squared diagonal elements of L.
4. For a vector z computing $Q z$ is of course straightforward. To compute $x=(\phi I+Q)^{-1} z$ note that this is equivalent to solving the equation $(\phi I+Q) x=z$. How can we apply the Cholesky factorization $L L^{\top}$ of the sparse matrix $(\phi I+Q)$ to solve $(\phi I+Q) x=z$ in an efficient manner (recall L is lower triangular)?
5. Use the above results to implement maximum likelihood estimation of β and σ^{2} given fixed values of a and ϕ. Next use this to implement profile likelihood estimation of a and ϕ (see also example R code).

3 Inference for noise variance

Consider the electricity consumption-temperature data.

1. Fit the models from Section 1-2 with Y equal to the electricity consumption and X the matrix with a first column of ones, a second column given by the temperatures, and a third column given by the binary D variable (weekday vs. weekend).
2. Conduct a likelihood ratio test for $H_{0}: \sigma^{2}=0$. Use a parametric bootstrap to approximate the distribution of the likelihood ratio under H_{0}.
