Course topics (tentative)

- ▶ linear mixed models
- ▶ likelihood-based inference
- ► generalized linear mixed models
- ► computational methods
- estimating equations (depending on time)
- ► Bayesian inference and Monte Carlo methods (depending on time)

The role of random effects

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

February 8, 2012

1/23

Outline for today

- examples of data sets.
- ► analysis of variance
- multivariate normal distribution
- ▶ linear mixed models

Reflectance (colour) measurements for samples of cardboard (egg trays)

Four replications at same position on each cardboard

For five cardboards: four replications at five positions at each cardboard

Colour variation between/within cardboards?

3/23 4/23

Orthodontic growth curves

Distance between pituitary and the pterygomaxillary fissure for children of age 8-14

Distance versus age:

Distance versus age grouped according to child

Different intercepts for different children

Compression of mats for cows

Compression vs. pressure for two brands of mats

Non-linear relation

$$y = \frac{ab + cx^d}{b + x^d}$$

Random variation between mats of same brand, small measurement noise.

5/23 6/23

Wheezing

Probability of wheezing (astma) in relation to age and smoking habits of mother:

Original data binary: wheezed or not for each of 4 years for each child.

Correlation between measurements for the same child ?

Model for reflectances: one-way anova

Four replications on each cardboard

Models:

$$Y_{ij} = \mu + \epsilon_{ij}$$

or

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

where μ and α_i are fixed unknown parameters and ϵ_{ij} stochastic noise or

$$Y_{ij} = \mu + U_i + \epsilon_{ij}$$

where U_i are random variables

Which is most relevant?

7/23 8/23

The role of random effects

Quantify sources of variation (e.g. quality control): is pulp for paper production too heterogeneous ?

Decomposition of variance: $\mathbb{V}\operatorname{ar} Y_{ij} = \mathbb{V}\operatorname{ar} U_i + \mathbb{V}\operatorname{ar} \epsilon_{ij} = \sigma^2 + \tau^2$

Covariances:

$$\mathbb{C} ext{ov}[Y_{ij},Y_{i'j'}] = egin{cases} 0 & i
eq i' \ \mathbb{V} ext{ar}U_i & i = i', j
eq j' \ \mathbb{V} ext{ar}U_i + \mathbb{V} ext{ar}\epsilon_{ij} & i = i', j = j' \end{cases}$$

Correlations:

$$\mathbb{C}\text{orr}[Y_{ij}, Y_{i'j'}] = \begin{cases} 0 & i \neq i' \\ \sigma^2/(\sigma^2 + \tau^2) & i = i', j \neq j' \\ 1 & i = i', j = j' \end{cases}$$

That is, observations for same cardboard are correlated !

9 / 23

Implications: evaluation of uncertainty

Correct evaluation of uncertainty of estimates of fixed effects: suppose we wish to estimate $\mu = \mathbb{E} Y_{ij}$. Due to correlation, observations on same cardboard to some extent redundant.

Model ignoring variation between double with random cardboard cardboards effects

$$Y_{ij} = \mu + \epsilon_{ij}, i = 1, \dots, m, j = 1, \dots, k$$
 $Y_{ij} = \mu + U_i + \epsilon_{ij},$
$$\mathbb{V}\mathrm{ar}\epsilon_{ij} = \sigma^2 + \tau^2 \qquad \mathbb{V}\mathrm{ar}U_i = \sigma^2, \quad \mathbb{V}\mathrm{ar}\epsilon_{ij} = \tau^2$$

$$\mathbb{V}\mathrm{ar}\bar{Y}_{\cdot\cdot\cdot} = \frac{\sigma^2 + \tau^2}{mk} \qquad \mathbb{V}\mathrm{ar}\bar{Y}_{\cdot\cdot\cdot} = \frac{\sigma^2}{m} + \frac{\tau^2}{mk}$$

With first model, variance is underestimated!

10 / 23

Break

Show results regarding variances on two previous slides.

Two levels of random effects

For five cardboards we have 4 replications at 4 positions.

Hierarchical model (nested random effects)

$$Y_{ipj} = \mu + U_i + U_{ip} + \epsilon_{ipj}$$

$$Var Y_{ipj} = \sigma^2 + \omega^2 + \tau^2$$

11/23

Covariance structure for nested random effects model

$$Y_{ipj} = \mu + U_i + U_{ip} + \epsilon_{ipj}$$

$$\mathbb{C}\mathrm{ov}(Y_{ipj},Y_{lqk}) = \begin{cases} 0 & i \neq l \\ \sigma^2 & i = l, p \neq q \text{ same card} \\ \sigma^2 + \omega^2 & i = l, p = q \text{ same card and pos.} \\ \sigma^2 + \omega^2 + \tau^2 & i = 1, p = q, k = j \quad (\mathbb{V}\mathrm{ar}Y_{ipj}) \end{cases}$$

13 / 23 14 / 23

Model for longitudinal growth data

$$Y_{ij} = \xi_i + \eta_i x_{ij} + \zeta_{ij} + \epsilon_{ij}$$

i: child, *j*: time.

Random intercepts and slopes?

Correlated error ζ_{ij} ? e.g. AR(1)

$$\zeta_{ij} = \phi \zeta_{i(j-1)} + \nu_i$$

Correlation structure for nested random effects model

$$Y_{ipi} = \mu + U_i + U_{ip} + \epsilon_{ipi}$$

$$\operatorname{\mathbb{C}orr}(Y_{ipj},Y_{lqk}) = \begin{cases} 0 & i \neq l \\ \frac{\sigma^2}{\sigma^2 + \omega^2 + \tau^2} & i = l, p \neq q \\ \frac{\sigma^2 + \omega^2}{\sigma^2 + \omega^2 + \tau^2} & i = l, p = q \\ 1 & i = 1, p = q, k = j \end{cases}$$

Multivariate normal distribution

Let $\mu \in \mathbb{R}^p$ and Σ a $p \times p$ symmetric and positive semidefinite $p \times p$ matrix.

Spectral decomposition of Σ :

$$\Sigma = U \Lambda U^{\mathsf{T}}$$

where U orthonormal matrix (columns=eigen vectors) and Λ diagonal matrix of eigen values.

Definition: a *p*-variate random $p \times 1$ vector Y is *p*-variate normal $N_p(\mu, \Sigma)$ if Y is distributed as

$$\mu + U\Lambda^{1/2}Z$$

where $Z = (Z_1, ..., Z_n)$ is a vector of independent standard normal random varriables.

 $N_p(\mu, \Sigma)$ uniquely determined by μ and Σ .

Geometric interpretation and PCA

 $\Lambda^{1/2}$: scaling. *U* rotation. I.e. *Y* scaled and rotated *Z*.

Let v_i ith eigen vector. Then $v_i^T Y$ ith principal component with variance λ_i .

Principal components are independent. Since $\lambda_1 > \lambda_2, \dots, \lambda_p$, $v_1^\mathsf{T} Y$ explains most of the variance in Y $(\sum_i \mathbb{V}\mathrm{ar} Y_i = \sum_i \lambda_i)$.

 v_i is called loading vector for ith PC.

17 / 23

Break

Show last result on previous slide.

Equivalent definitions:

Definition: a random $p \times 1$ vector Y is p-variate normal with mean μ and covariance matrix Σ if $a^T Y$ is univariate normal with mean $a^T \mu$ and variance $a^T \Sigma a$ for any $a \in \mathbb{R}^p$.

Definition: a random $p \times 1$ vector Y is p-variate normal with mean μ and covariance matrix Σ if Y has characteristic function $L_Y(t) = \mathbb{E} \exp(it^T Y) = \exp(it^T \mu - \frac{1}{2}t^T \Sigma t^T)$.

NB: since $\mathbb{V}\mathrm{ar} a^\mathsf{T} Y = a^\mathsf{T} \Sigma a \geq 0$ it follows that Σ must be positive semi-definite.

From the definition it follows easily that

$$Y \sim N_p(\mu, \Sigma) \Rightarrow AY \sim N_m(A\mu, A\Sigma A^{\mathsf{T}})$$

for any $m \times p$ matrix A.

18 / 23

Density of multivariate normal

Suppose Z_i are independent standard normal.

Then
$$Z = (Z_1, \ldots, Z_p) \sim N_p(0, I)$$
 with joint density

$$f_Z(z_1,\ldots,z_p)=(2\pi)^{n/2}\exp(-\|z\|^2/2)$$

Suppose further that $Y \sim N_p(\mu, \Sigma)$ where Σ positive definite. Then $\Sigma = LL^T$ for some invertible matrix L (Cholesky or spectral decomposition, Jiang, B.5).

Thus $Y \sim \mu + LZ$ and Jacobian of transformation is $|L| = |\Sigma|^{1/2}$. By multivariate transformation theorem

$$f_Y(y_1,\ldots,y_p) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp(-\frac{1}{2}(y-\mu)^{\mathsf{T}} \Sigma^{-1}(y-\mu))$$

19 / 23 20 / 23

Density if Σ not positive definite

Suppose Σ has rank r < p. Then $\lambda_{r+1} = \cdots = \lambda_p = 0$ and Y lives on subspace $L = \operatorname{span}\{v_1, \ldots, v_r\} \subset \mathbb{R}^p$. Possible to define density function on L.

21 / 23

More exercises

5. show

$$Y \sim N_p(\mu, \Sigma) \Rightarrow AY \sim N_m(A\mu, A\Sigma A^{\mathsf{T}})$$

6. In Bayesian statistics the following often used as a 'smoothing prior':

$$f(x_1,\ldots,x_n) \propto \exp(-\frac{1}{2}\sum_{i=2}^n(x_i-x_{i-1})^2)$$

Find Q playing the role as Σ^{-1} so that the above is of the form of a multivariate Gaussian density. Is Q invertible? Can you find a 'square-root' of Q?

- 7. exercises 1.1, 1.2 and 1.3 at page 48 in Jiang.
- 8. The Laplace transform (moment generating function) of a univariate $N(\xi, \tau^2)$ random variable is $M(t) = \exp(t\xi + t^2\tau^2/2)$. Use this to compute the first four moments and central moments of a normal distribution.

23 / 23

Exercises

- 1. execute the script basic.R (on the webpage) to get acquainted with basic operations in R.
- 2. compute $\mathbb{V}\mathrm{ar}\bar{Y}$.. for one way ANOVA.
- 3. fit linear models for the orthodontic growth curves with subject specific intercepts. Draw histograms of the fitted intercepts (can be extracted using coef()). Check residuals from the model.
- 4. compute covariance and correlation structure of observations from linear models with random intercepts or random slopes:

$$Y_{ij} = \alpha + U_i + \beta x_{ij} + \epsilon_{ij}$$
 $Y_{ij} = \alpha + V_i x_{ij} + \epsilon_{ij}$

where the U_i and V_i are independent $N(0, \sigma^2)$. What can you say about the variance structure of Y_{ij} ? Consider also the model with both random intercepts and slopes.

22 / 23