
Course topics (tentative)

◮ linear mixed models

◮ likelihood-based inference

◮ generalized linear mixed models

◮ computational methods

◮ estimating equations (depending on time)

◮ Bayesian inference and Monte Carlo methods (depending on
time)
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Outline for today

◮ examples of data sets.

◮ analysis of variance

◮ multivariate normal distribution

◮ linear mixed models
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Reflectance (colour) measurements for samples of

cardboard (egg trays)

Four replications at same
position on each cardboard
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For five cardboards: four
replications at five positions at
each cardboard
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Colour variation between/within cardboards ?
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Orthodontic growth curves

Distance between pituitary and the pterygomaxillary fissure for
children of age 8-14

Distance versus age:
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Different intercepts for different children
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Compression of mats for cows

Compression vs. pressure for two brands
of mats
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Random variation between
mats of same brand, small
measurement noise.
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Wheezing

Probability of wheezing (astma) in relation to age and smoking
habits of mother:
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Original data binary:
wheezed or not for each of
4 years for each child.

Correlation between
measurements for the
same child ?
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Model for reflectances: one-way anova

Four replications on each
cardboard
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Models:

Yij = µ+ ǫij

or
Yij = µ+ αi + ǫij

where µ and αi are fixed
unknown parameters and ǫij
stochastic noise or

Yij = µ+ Ui + ǫij

where Ui are random variables

Which is most relevant ?
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The role of random effects
Quantify sources of variation (e.g. quality control): is pulp for
paper production too heterogeneous ?

Decomposition of variance: VarYij = VarUi + Varǫij = σ2 + τ2

Covariances:

Cov[Yij ,Yi ′j ′ ] =








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0 i 6= i ′

VarUi i = i ′, j 6= j ′

VarUi + Varǫij i = i ′, j = j ′

Correlations:

Corr[Yij ,Yi ′j ′] =











0 i 6= i ′

σ2/(σ2 + τ2) i = i ′, j 6= j ′

1 i = i ′, j = j ′

That is, observations for same cardboard are correlated !
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Implications: evaluation of uncertainty

Correct evaluation of uncertainty of estimates of fixed effects:
suppose we wish to estimate µ = EYij . Due to correlation,
observations on same cardboard to some extent redundant.

Model ignoring variation between
cardboards

Yij = µ+ǫij , i = 1, . . . ,m, j = 1, . . . , k

Varǫij = σ2 + τ2

VarȲ·· =
σ2 + τ2

mk

Model with random cardboard
effects

Yij = µ+ Ui + ǫij ,

VarUi = σ2, Varǫij = τ2

VarȲ·· =
σ2

m
+

τ2

mk

With first model, variance is underestimated !
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Break

Show results regarding variances on two previous slides.
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Two levels of random effects

For five cardboards we have 4 replications at 4 positions.

Hierarchical model (nested random effects)

Yipj = µ+ Ui + Uip + ǫipj

VarYipj = σ2 + ω2 + τ2
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Covariance structure for nested random effects model

Yipj = µ+ Ui + Uip + ǫipj

Cov(Yipj ,Ylqk) =
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0 i 6= l

σ2 i = l , p 6= q same card

σ2 + ω2 i = l , p = q same card and pos.

σ2 + ω2 + τ2 i = 1, p = q, k = j (VarYipj)
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Correlation structure for nested random effects model

Yipj = µ+ Ui + Uip + ǫipj

Corr(Yipj ,Ylqk) =
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σ2
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i = l , p 6= q

σ2+ω2

σ2+ω2+τ2
i = l , p = q

1 i = 1, p = q, k = j
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Model for longitudinal growth data

Yij = ξi + ηixij + ζij + ǫij

i : child, j : time.

Random intercepts and slopes ?

Correlated error ζij ? e.g. AR(1)

ζij = φζi(j−1) + νi
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Multivariate normal distribution
Let µ ∈ R

p and Σ a p × p symmetric and positive semidefinite
p × p matrix.

Spectral decomposition of Σ:

Σ = UΛUT

where U orthonormal matrix (columns=eigen vectors) and Λ
diagonal matrix of eigen values.

Definition: a p-variate random p × 1 vector Y is p-variate normal
Np(µ,Σ) if Y is distributed as

µ+ UΛ1/2Z

where Z = (Z1, . . . ,Zn) is a vector of independent standard normal
random varriables.

Np(µ,Σ) uniquely determined by µ and Σ.
16 / 23



Geometric interpretation and PCA

Λ1/2: scaling. U rotation. I.e. Y scaled and rotated Z .

Let vi ith eigen vector. Then vTi Y ith principal component with
variance λi .

Principal components are independent. Since λ1 > λ2, . . . , λp ,
vT1 Y explains most of the variance in Y (

∑

i VarYi =
∑

i λi ).

vi is called loading vector for ith PC.
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Equivalent definitions:

Definition: a random p× 1 vector Y is p-variate normal with mean
µ and covariance matrix Σ if aTY is univariate normal with mean
aTµ and variance aTΣa for any a ∈ R

p.

Definition: a random p× 1 vector Y is p-variate normal with mean
µ and covariance matrix Σ if Y has characteristic function
LY (t) = E exp(itTY ) = exp(itTµ− 1

2t
TΣtT).

NB: since VaraTY = aTΣa ≥ 0 it follows that Σ must be positive
semi-definite.

From the definition it follows easily that

Y ∼ Np(µ,Σ) ⇒ AY ∼ Nm(Aµ,AΣA
T)

for any m × p matrix A.
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Break

Show last result on previous slide.
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Density of multivariate normal

Suppose Zi are independent standard normal.

Then Z = (Z1, . . . ,Zp) ∼ Np(0, I ) with joint density

fZ (z1, . . . , zp) = (2π)n/2 exp(−‖z‖2/2)

Suppose further that Y ∼ Np(µ,Σ) where Σ positive definite.
Then Σ = LLT for some invertible matrix L (Cholesky or spectral
decomposition, Jiang, B.5).

Thus Y ∼ µ+ LZ and Jacobian of transformation is |L| = |Σ|1/2.
By multivariate transformation theorem

fY (y1, . . . , yp) = (2π)−n/2|Σ|−1/2 exp(−
1

2
(y − µ)TΣ−1(y − µ))
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Density if Σ not positive definite

Suppose Σ has rank r < p. Then λr+1 = · · · = λp = 0 and Y lives
on subspace L = span{v1, . . . , vr} ⊂ R

p. Possible to define density
function on L.
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Exercises

1. execute the script basic.R (on the webpage) to get
acquainted with basic operations in R.

2. compute VarȲ·· for one way ANOVA.

3. fit linear models for the orthodontic growth curves with
subject specific intercepts. Draw histograms of the fitted
intercepts (can be extracted using coef()). Check residuals
from the model.

4. compute covariance and correlation structure of observations
from linear models with random intercepts or random slopes:

Yij = α+ Ui + βxij + ǫij Yij = α+ Vixij + ǫij

where the Ui and Vi are independent N(0, σ2). What can you
say about the variance structure of Yij ? Consider also the
model with both random intercepts and slopes.
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More exercises

5. show
Y ∼ Np(µ,Σ) ⇒ AY ∼ Nm(Aµ,AΣA

T)

6. In Bayesian statistics the following often used as a ‘smoothing
prior’:

f (x1, . . . , xn) ∝ exp(−
1

2

n
∑

i=2

(xi − xi−1)
2)

Find Q playing the role as Σ−1 so that the above is of the
form of a multivariate Gaussian density. Is Q invertible ? Can
you find a ‘square-root’ of Q ?

7. exercises 1.1, 1.2 and 1.3 at page 48 in Jiang.

8. The Laplace transform (moment generating function) of a
univariate N(ξ, τ2) random variable is
M(t) = exp(tξ + t2τ2/2). Use this to compute the first four
moments and central moments of a normal distribution.
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