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Outline for today

◮ cherries data example

◮ logistic model with random effects

◮ generalized linear mixed models

◮ the likelihood function of a GLMM

◮ Laplace approximation and PQL
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Cherry flower data

YstBbf =

{
1 if bud is dead

0 if bud is alive

s = 1, . . . , 5 STOCK (variety), t = 1, . . . , 4 TREE, B = 1, 2, 3
BRANCH, b = 1, 2, . . . , 5 BUD f = 1, 2, . . ., FLOWER.

Are some stocks more sensitive to night frost than others ?

Logistic regression but observations on same tree/branch/bud may
be correlated...
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Logistic regression analysis

> cherfit=glm(cbind(STATUS,1-STATUS)~factor(STOCK)+factor(BRANCHN

> summary(cherfit)

...

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3890 -1.2187 0.6165 0.8092 1.1367

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.09657 0.18383 0.525 0.59937

factor(STOCK)2 1.87325 0.29737 6.299 2.99e-10 ***

factor(STOCK)3 0.05564 0.21676 0.257 0.79741

factor(STOCK)4 0.67126 0.24026 2.794 0.00521 **

factor(STOCK)5 0.21711 0.22520 0.964 0.33503

factor(BRANCHNR)2 0.79626 0.18460 4.314 1.61e-05 ***

factor(BRANCHNR)3 0.82456 0.19346 4.262 2.03e-05 ***

...

Residual deviance: 997.92 on 946 degrees of freedom
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Likelihood ratio tests using the drop1 function:

> drop1(cherfit,test="Chisq")

Single term deletions

Model:

cbind(STATUS, 1 - STATUS) ~ factor(STOCK) + factor(BRANCHNR)

Df Deviance AIC LRT Pr(Chi)

<none> 997.92 1011.92

factor(STOCK) 4 1061.17 1067.17 63.25 6.013e-13 ***

factor(BRANCHNR) 2 1023.49 1033.49 25.57 2.808e-06 ***
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Overdispersion
YstB no. dead flowers on each bud.

Empirical variances of YstB versus binomial variances (within
STOCK and splitting according to total numbers of flowers on
buds).

Evidence of overdispersion !
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logistic mixed model for cherry flowers

pstBbf probability of dead flower.

Linear mixed model for logit(pstBbf ):

logit(pstBbf ) = µ+ αs + βB + UstBb + UstB + Ust

i.e. random effects for bud, branch and tree.
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Analysis using lmer

> cherfitlmer=lmer(cbind(STATUS,1-STATUS)~factor(STOCK)+

factor(BRANCHNR)+(1|BUDID) +(1|BRANCHID)+(1|TREEID),

family=binomial(logit),method="Laplace")

> summary(cherfitlmer)

...

AIC BIC logLik deviance

605.3 653.9 -292.7 585.3

Random effects:

Groups Name Variance Std.Dev.

BUDID (Intercept) 1.8118e+02 1.3460e+01

BRANCHID (Intercept) 9.9348e+00 3.1520e+00

TREEID (Intercept) 5.0000e-10 2.2361e-05

number of obs: 953, groups: BUDID, 287; BRANCHID, 58; TREEID, 20

...

Estimated scale (compare to 1 ) 0.3908327

Very large variance component for bud ! Almost zero variance for
tree.
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Very strong correlation within buds:

0 1 #no of dead and alive for each bud

3611 0 3 #TREEID 36 BRANCHNR 1 BUDNR 1 has 3 dead flowers

3612 0 4 #and 0 alive

3613 3 0

3614 0 3

3615 0 2

...

Either all dead or all alive...

Suggests to cumulate data and create new variable dead/alive for
each bud.
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Analysis with reduced data set

> cherredfit=glm(cbind(STATUS,1-STATUS)~factor(STOCK)

+factor(BRANCHNR),family=binomial(logit))

> drop1(cherredfit,test="Chisq")

Single term deletions

Model:

cbind(STATUS, 1 - STATUS) ~ factor(STOCK) + factor(BRANCHNR)

Df Deviance AIC LRT Pr(Chi)

<none> 313.07 327.07

factor(STOCK) 4 333.49 339.49 20.42 0.0004128 ***

factor(BRANCHNR) 2 321.76 331.76 8.69 0.0129405 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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> cherredlmer=lmer(cbind(STATUS,1-STATUS)~factor(STOCK)+factor(BR

+(1|BRANCHID),family=binomial(logit),method="Laplace",data=cherre

> summary(cherredlmer)

...

AIC BIC logLik deviance

309.3 338.6 -146.6 293.3

Random effects:

Groups Name Variance Std.Dev.

BRANCHID (Intercept) 1.8156 1.3475

number of obs: 287, groups: BRANCHID, 58

Estimated scale (compare to 1 ) 0.8506848

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.07162 0.58924 -0.1215 0.90326

factor(STOCK)2 2.51185 0.86824 2.8930 0.00382 **

factor(STOCK)3 0.20331 0.70205 0.2896 0.77213

factor(STOCK)4 0.93288 0.75724 1.2320 0.21797

factor(STOCK)5 0.44781 0.72471 0.6179 0.53664

factor(BRANCHNR)2 0.88478 0.57430 1.5406 0.12341

factor(BRANCHNR)3 1.27228 0.61601 2.0654 0.03889 *
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Likelihood ratio test:

> cherredlmer2=lmer(cbind(STATUS,1-STATUS)~factor(BRANCHNR)+(1|BR

> anova(cherredlmer2,cherredlmer)

Data: cherred

Models:

cherredlmer2: cbind(STATUS, 1 - STATUS) ~ factor(BRANCHNR) + (1

cherredlmer: cbind(STATUS, 1 - STATUS) ~ factor(STOCK) + factor(BRANCHNR

cherredlmer2: (1 | BRANCHID)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

cherredlmer2 4 312.24 326.88 -152.12

cherredlmer 8 309.29 338.57 -146.64 10.952 4 0.02711

Likelihood for logistic model:

> logLik(cherredfit)

’log Lik.’ -156.5337 (df=7)#likelihood much smaller than

#for logistic mixed model...

-2 log likelihood ratio for no branch random effect is
2(156, 5− 146.6) = 19.8 which is highly significant when compared
with χ2(1).
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Prediction of random effects for cherry flowers

> branchre=ranef(cherredlmer)$BRANCHID

> qqnorm(branchre[[1]])

> qqline(branchre[[1]])
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NB: even if model is correct,
predictions only approximately
normal. Predictions are modes of
conditional distributions of
random effects (more details
later)

NB: predicted random effects can
be used to rank subjects.
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Residuals

Fitted values p̂stBb obtained by plugging in parameter estimates
and predictions for the unknown parameters and random effects.

Residuals (ystBb − p̂stBb)/
√

p̂stBb(1− p̂stBb)
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Interpretation of variance components I

For a linear mixed model we can decompose the variance of an
observation as the sum of the variance components.

For logistic and Poisson regression with random effects the
decomposition is only possible at the level of the linear predictor.

If e.g.
ηij = logit(pij) = α+ Ui + Uij

and random effects independent, then

Varηij = VarUi + VarUij = τ2 + ω2

Also note

Epij = E
exp(ηij)

1 + exp(ηij)
6= exp(Eηij)

1 + exp(Eηij)
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Interpretation of variance components II

However, if X ∼ N(µ, σ2) then

E exp(tX ) = exp(tµ+ t2σ2/2).

(Laplace transform of X )

Thus if we consider odds

oij = pij/(1− pij) = exp(ηij)

then e.g.
Eoij = exp(α+ (τ2 + ω2)/2)
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Variance components and Poisson regression

For Poisson regression with

ηij = log λij = α+ Ui

mean of observation Yij is

EYij = E[Yij |λij ] = Eλij = exp(α+ τ2/2)

and variance is (note overdispersion!)

VarYij = Varλij + Eλij = E exp(2ηij )− (Eλij)
2 + EYij

= EYij [exp(α+ 3τ2/2) − EYij + 1]

(used general formulas EY = EE[Y |X ] and
VarY = VarE[Y |X ] + EVar[Y |X ])
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Generalized linear mixed effects models

Consider stochastic variable Y = (Y1, . . . ,Yn) and random effects
U.

Two step formulation of GLMM:

◮ U ∼ N(0,Σ).

◮ Given realization u of U, Yi independent and each follows
density fi (y|u) with mean µi = g−1(ηi ) and linear predictor
η = Xβ + Zu.

I.e. conditional on U, Yi follows a generalized linear model.

NB: GLMM specified in terms of marginal density of U and
conditional density of Y given U. But the likelihood is the
marginal density of f (y) which can be hard to evaluate !
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Likelihood for generalized linear mixed model

For normal linear mixed models we could compute the marginal
distribution of Y directly as a multivariate normal. That is, f (y) is
a density of a multivariate normal distribution.

For a generalized linear mixed model it is difficult to evaluate the
integral:

f (y) =

∫

Rm

f (y,u)du =

∫

Rm

f (y|u)f (u)du

since f (y|u)f (u) is a very complex function.
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Non-normal example: logistic regression with random
intercepts

Uj ∼ N(0, τ2), j = 1, . . . ,m

Yj |Uj = uj ∼ binomial(nj , pj)

log(pj/(1 − pj)) = ηj = β + Uj

pj = exp(ηj )/(1 + exp(ηj))

Conditional density:

f (y |u;β) =
∏

j

p
yj
j (1− pj)

1−yj =
∏

j

exp(β + uj)
yj

(1 + exp(β + uj))nj

Likelihood function (u = (u1, . . . , um))
∫

Rm

f (y |u;β)f (u; τ2)du =
∏

j

∫

R

exp(β + uj)
yj

(1 + exp(β + uj))nj

exp(−u2j /(2τ
2))

√
2πτ2

duj

Integrals can not be evaluated in closed form. 20 / 26



One-dimensional case

Compute

L(θ) =

∫

R
f (y |u;β)f (u; τ2)du

Possibilities:

◮ Laplace approximation.

◮ Numerical integration/quadrature (e.g. Gaussian quadrature
as in PROC NLMIXED (SAS) or GLLAM (STATA)) (one level of
random effects, dimensions one or two).
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Laplace approximation

Let g(u) = log(f (y |u)f (u)) and choose û so g ′(û) = 0
(û = argmax g(u)).

Taylor expansion around û:

g(u) ≈ g̃(u) =

g(û)+(u−û)g ′(û)+
1

2
(u−û)2g ′′(û) = g(û)− 1

2
(u−û)2

(
−g ′′(û)

)

I.e. exp(g̃(u)) proportional to normal density N
(
µLP , σ

2
LP

)
,

µLP = û σ2
LP = −1/g ′′(û).

L(θ) =

∫

R
exp(g(u))du ≈

∫

R
exp(g̃(u))du

= exp(g(û))

∫

R
exp

(
− 1

2σ2
LP

(u − µLP)
2
)
du = exp(g(û))

√
2πσ2

LP
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Laplace approximation also possible for higher dimensions
(multivariate Taylor expansion).

NB:

f (u|y) = f (y |u)f (u)/f (y) ∝ exp(g(u)) ≈ const exp
(
− 1

2σ2
LP

(u−µLP)
2
)

where µLP = û σ2
LP =,−1/g ′′(û).

Hence
U|Y = y ≈ N

(
µLP , σ

2
LP

)

Note: µLP is mode of conditional distribution - used for prediction
of random effects in lmer (ranef()).
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Penalized quasi-likelihood

One solution: do not use likelihood function but something simpler.

θ = (β, τ2)

PQL estimates θ̂ and û maximize joint density

f (y , u; θ) = f (y |u;β)f (u; τ2).

PQL estimates less accurate than ML.

Asymptotic results require increasing number of observations for
each random effect.

Implemented in lmer and SAS macro glimmix.
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Exercises

◮ Repeat the exercise regarding the wheezing data but now
using introducing subject-specific random effects. How large is
the standard deviation for these random effects ? Compute a
likelihood ratio test for the significance of the subject specific
random variation.

◮ The disruption data available on the web page were obtained
by letting 24 subjects perform a memory task with sound
playing in the background. The response is the number of
errors committed. The five background sound conditions
were: silence, white noise, continuous frequency-modulated
(FM) tone at 8 Hz, FM tone at 0.25Hz interleaved with short
periods of silence, and Korean speech. Consider Poisson
regression models for the number of errors both with and
without subject specific random effects. Is there a significant
subject specific random variation ? - and is there a significant
effect of the background noise ?
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More exercises
◮ (continuation of previous exercise) Which subject is least

susceptible to noise ? (hint: look at predicted random
effects). Draw a qqplot of the random effects - do they
appear to be normal ?

◮ try alternatively a linear mixed effects model for the disruption
data (NB for large counts or square root transformed counts
the normal distribution may be a good approximation). Assess
the fitted linear mixed effects model using residuals and
predicted random effects.

Optional exercises:
◮ (disruption data exercise) using the fitted Poisson mixed

regression model, compute the marginal mean and variance
for an randomly selected subject who is exposed to Korean
speech.

◮ show that the conditional mean is the minimum mean square
error predictor, ie. E(X − X̂ )2 is minimal for X̂ = E(X |Y )
where X denotes an unobserved random variable and Y the
data. 26 / 26


