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Outline for today

◮ Computation of likelihood function

1. Gaussian quadrature
2. Monte Carlo methods

◮ Newton-Raphson

◮ EM-algorithm

◮ case study of non-linear mixed effects model
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Generalized linear mixed effects models

Consider stochastic variable Y = (Y1, . . . ,Yn) and random effects
U.

Two step formulation of GLMM:

◮ U ∼ N(0,Σ).

◮ Given realization u of U, Yi independent and each follows
density fi (y|u) with mean µi = g−1(ηi ) and linear predictor
η = Xβ + Zu.

I.e. conditional on U, Yi follows a generalized linear model.

NB: GLMM specified in terms of marginal density of U and
conditional density of Y given U. But the likelihood is the
marginal density of f (y) which can be hard to evaluate !
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Likelihood for generalized linear mixed model

For normal linear mixed models we could compute the marginal
distribution of Y directly as a multivariate normal. That is, f (y) is
a density of a multivariate normal distribution.

For a generalized linear mixed model it is difficult to evaluate the
integral:

f (y) =

∫

Rm

f (y,u)du =

∫

Rm

f (y|u)f (u)du

since f (y|u)f (u) is a very complex function.
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Adaptive Gaussian Quadrature - one random effect
Gauss-Hermite quadrature (numerical integration) is

∫

R

f (x)φ(x)dx ≈

n
∑

i=1

wi f (xi )

where φ is the standard normal density and (xi ,wi ),i = 1, n are
certain arguments and weights which can be looked up in a table.

We can replace ≈ with = whenever f is a polynomial of degree
2n − 1 or less.

Adaptive Gauss-Hermite quadrature:
∫

f (y |u)f (u)du ≈

∫

f (y |u)f (u)

φ(u;µLP , σ
2
LP )

φ(u;µLP , σ
2
LP)du =

∫

f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
σLPφ(x)dx

(change of variable: x = (u − µLP)/σLP )
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Advantage

f (y |u)f (u)

φ(u;µLP , σ
2
LP)

=
f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
x = (u−µLP)/σLP

close to constant (f (y)) – hence adaptive G-H quadrature very
accurate.

GH scheme with n = 5:

x 2.020 0.959 0.0000000 -0.959 -2.020
w 0.011 0.222 0.533 0.222 0.011

(x ’s are roots of Hermite polynomial computed using ghq in library
glmmML).

(GH schmes for n = 5 and n = 10 available on web page)
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Prediction of random effects for GLMM

Conditional mean

E[U|Y = y ] =

∫

uf (u|y)du

is minimum mean square error predictor, i.e.

E(U − Û)2

is minimal with Û = H(Y ) where H(y) = E[U|Y = y ]

Difficult to analytically evaluate

E[U|Y = y ] =

∫

uf (y |u)f (u)/f (y)du
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Computation of conditional expectations (prediction)

E[U|Y = y ] =

∫

u
f (y |u)f (u)

f (y)
du =

1

f (y)

∫

(σLPx+µLP)
f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
σLPφ(x)dx

Note:

(σLPx + µLP)
f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
σLP

behaves like a first order polynomial in x - hence GH still accurate.
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Difficult cases for numerical integration - dimension m > 1

◮ correlated random effects

◮ crossed random effects

◮ nested random effects

Not possible to factorize likelihood into low-dimensional integrals

Number of quadrature points ≈ km where k is number of
quadrature points for 1D – hence numerical quadrature may not
be feasible.

Alternatives: PQL and Laplace-approximation or Monte Carlo

computation.
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Monte Carlo computation of likelihood for GLMM

Likelihood function is an expectation:

L(θ) = f (y ; θ) =

∫

Rm

f (y |u;β)f (u; τ2)du = Eτ2f (y |U;β)

Use Monte Carlo simulations to approximate expectation.

NB: also applicable in high dimensions
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Importance sampling
Consider Z ∼ f and suppose we wish to evaluate Eh(Z ) where
h(Z ) has large variance.

Suppose we can find density g so that

h(z)f (z)

g(z)
≈ const and h(z)f (z) > 0 ⇒ g(z) > 0

Then

Eh(Z ) =

∫

h(z)f (z)

g(z)
g(z)dz = E

h(Y )f (Y )

g(Y )

where Y ∼ g .

Note variance of h(Y )f (Y )/g(Y ) small so estimate

Eh(Z ) ≈
1

n

n
∑

i=1

h(Yi)f (Yi)

g(Yi)

has small Monte Carlo error.
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Importance sampling for GLMM

g(·) probability density on R
m.

L(θ) =

∫

R

f (y |u;β)f (u; τ2)du =

∫

R

f (y |u;β)f (u; τ2)

g(u)
g(u)du =

E
f (y |V ;β)f (V ; τ2)

g(V )
where V ∼ g(·).

L(θ) ≈ LIS,h(θ) =
1

M

M
∑

l=1

f (y |V l ;β)f (V l ; τ2)

g(V l)
where V l ∼ g(·), l = 1, . . . ,M

Find h so Var
f (y |V ;β)f (V ;τ2)

g(V ) small.

VarLIS,h(θ) < ∞ if f (y |v ; θ)f (v ; θ)/g(v) bounded (i.e. use g(·)
with heavy tails).
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Simple Monte Carlo: g(u) = f (u; τ 2)

L(θ) =

∫

R

f (y |u;β)f (u; τ2)du = Eτ2 f (y |U;β) ≈ LSMC (θ) =

1

M

M
∑

l=1

f (y |U l ;β) where U l ∼ N(0, τ2) independent

Monte Carlo variance:

Var(LSMC (θ)) =
1

M
Varf (y |U1;β)
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Estimate Varf (y |U1;β) using empirical variance estimate based on
f (y |U l ;β), l = 1, . . . ,M:

1

M − 1

M
∑

l=1

(f (y |U l ;β) − LSMC (θ))
2

Often Varf (y |U1;β) is large so large M is needed.

Increasing dimension leads to worse performance (useless in high
dimensions)
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Possibility: Note

f (y |u, β)f (u; τ2)

f (u|y ; θ)
= f (y ; θ) = L(θ) = const

Laplace: U|Y = y ≈ N
(

µLP , σ
2
LP

)

Use g(·) density for N
(

µLP , σ
2
LP

)

or tν
(

µLP , σ
2
LP

)

-distribution:

f (y |u, β)f (u; τ2)

g(u)
≈ const

so small variance.

Simulation straightforward.

Note: ‘Monte Carlo version’ of adaptive Gaussian quadrature.
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Possibility: Consider fixed θ0:

g(u) = f (u|y , θ0) = f (y |u; θ0)f (u; θ0)/L(θ0)

Then

L(θ) =

∫

R

f (y |u;β)f (u; τ2)

g(u)
g(u)du = L(θ0)

∫

R

f (y |u;β)f (u; τ2)

f (y |u;β0)f (u; τ20 )
f (u|y , θ0)du =

L(θ0)Eθ0

[ f (y |U ;β)f (U ; τ2)

f (y |U ;β0)f (U ; τ20 )
|Y = y

]

⇔
L(θ)

L(θ0)
= Eθ0

[ f (y |U ;β)f (U ; τ2)

f (y |U ;β0)f (U ; τ20 )
|Y = y

]

So we can estimate ratio L(θ)/L(θ0) where L(θ0) is unknown
constant.

This suffices for finding MLE:

argmax
θ

L(θ) = argmax
θ

L(θ)

L(θ0)
≈

1

M

M
∑

l=1

f (y |U l ;β)f (U l ; τ2)

f (y |U l ;β0)f (U l ; τ20 )

where Ul ∼ f (u|y ; θ0)
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Simulation of random variables
Direct methods exists for many standard distributions (normal,
binomial, t, etc.: rnorm(), rbinom(), rt() etc.)

Suppose f is a non-standard density but

f (z) ≤ Kg(z)

for some constant K and standard density g .

Then we may apply rejection sampling:

1. Generate Y ∼ g and W ∼ unif[0, 1].

2. If W ≤ f (Y )
Kg(Y ) return Y (accept); otherwise go to 1 (reject).

Note probability of accept is 1/K .

If f is high-dimensional density it may be hard to find g with small
K so rejection sampling mainly useful in small dimensions.

MCMC is then useful alternative (later).
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Proof of rejection sampling:

compute P(Y ≤ y |accept) = P(Y ≤ y |W ≤ f (Y )
Kg(Y ))
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Prediction of U using conditional simulation

Compute Monte Carlo estimate of E(U|Y = y) using conditional
simulations of U|Y = y or importance sampling.

E(U|Y = y) =
1

M

M
∑

m=1

Um, Um ∼ f (u|y)

We can also evaluate e.g. P(Ui > c |y) or P(Ui > Ul , l 6= i |Y ) etc.
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Conditional simulation of U |Y = y using rejection

sampling

Note
f (y |u;β0)f (u; τ

2
0 )/f (y ; θ0) ≤ K tν(u;µLP , σ

2
LP)

for some constant K .

Rejection sampling:

1. Generate V ∼ tν(µLP , σ
2
LP ) and W ∼ Unif(]0, 1[)

2. Return V if W ≤ f (V |y ; θ0)/(K t(V ;µLP , σ
2
LP)); otherwise

go to 1.
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Maximization of likelihood using Newton-Raphson

Let

Vθ(y , u) =
d

dθ
log f (y , u|θ)

Then

u(θ) =
d

dθ
log L(θ) = Eθ[Vθ(y ,U)|Y = y ]

and

j(θ) = −
d
2

dθTdθ
log L(θ)

= −
(

Eθ[dVθ(y ,U)/dθT|Y = y ]− Varθ[Vθ(y ,U)|Y = y ]
)

Newton-Raphson:

θl+1 = θl + j(θl)
−1u(θl)

All unknown expectations and variances can be estimated using
the previous numerical integration or Monte Carlo methods !
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EM-algorithm

Given current estimate θl :

1. (E) compute Q(θl , θ) = Eθl [log f (y ,U|θ)|Y = y ]

2. (M) θl+1 = argmaxθ Q(θl , θ).

For LNMM E-step can be computed explicitly (Jiang page 165)
but seems pointless as likelihood is available in closed form.

For GLMMs (E) step needs numerical integration or Monte Carlo.

Convergence of EM-algorithm can be quite slow. Maximization of
likelihood using Newton-Raphson seems better alternative.
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Overview of Jiang page 165-171

Page 165-167 (Monte Carlo) EM for linear mixed model and
threshold model.

Page 168-169: Newton-Rahpson and importance sampling.

Page 170-171: Monte Carlo EM with adaptive importance
sampling (t-distribution + Laplace approximation)
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Case study: non-linear mixed effects model for cow mats

data
Compression vs. pressure for two brands
of mats

pressure
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1

Non-linear relation

y = mmf(x) =
ab + cxd

b + xd
,

Random variation between
mats of same brand, small
measurement noise.
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Estimation of non-linear model with fixed effects:

nlsfit=nls(nedtryk~mmf(tryk,a,b,c,d),start=

c(a=0.1,b=1.670,c=80,d=0.6),data=mattressdata1)

Estimation of non-linear model with a, b, c as random effects:

nlmerfit=nlmer(nedtryk~mmfnlmer(tryk,a,b,c,d)~(a|matno)+

(b|matno)+(c|matno),mattressdata1,start=c(a=0.04,b=1.64,c=74,d=0.64))
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Simulated data from the two models:

Fixed effects: residual standard
error 0.72

0 1 2 3 4 5

10
20

30
40

pressure

co
m

pr
es

si
on

With random effects: residual
standard error 0.17
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Std. err. for a, b, c are 0.64, 0.05
and 0.14

Random effects model gives much better representation of
variability in data.

NB: to assess influence of variability of different parameters we
need to look at partial derivatives (sensitivities) wrt. these
parameters.
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Exercises

1. Exercise 4.3 on page 229 in Jiang.

2. R exercises on exercise-sheets exercises6.pdf and
exercises7.pdf.

3. Check formulas for u(θ) and j(θ). How can these expression
be computed using importance sampling ?
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