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Generalized linear mixed effects models

Consider stochastic variable Y = (Y1,...,Y;) and random effects
u.

Two step formulation of GLMM:
» U~ N(0,X).
» Given realization u of U, Y; independent and each follows

density f;(y|u) with mean u; = g~%(7;) and linear predictor
n=XB+ Zu.

l.e. conditional on U, Y; follows a generalized linear model.
NB: GLMM specified in terms of marginal density of U and

conditional density of Y given U. But the likelihood is the
marginal density of f(y) which can be hard to evaluate !

Outline for today
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Computation of likelihood function

1. Gaussian quadrature
2. Monte Carlo methods

v

Newton-Raphson
EM-algorithm

v

» case study of non-linear mixed effects model

Likelihood for generalized linear mixed model

For normal linear mixed models we could compute the marginal
distribution of Y directly as a multivariate normal. That is, f(y) is
a density of a multivariate normal distribution.

For a generalized linear mixed model it is difficult to evaluate the
integral:

)= [ fyupdu= [ rlyluru

since f(y|u)f(u) is a very complex function.
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Adaptive Gaussian Quadrature - one random effect
Gauss-Hermite quadrature (numerical integration) is

[ f00t)ax = 3 mf )
R i=1

where ¢ is the standard normal density and (x;, w;),i = 1, n are
certain arguments and weights which can be looked up in a table.

We can replace =~ with = whenever f is a polynomial of degree
2n — 1 or less.

Adaptive Gauss-Hermite quadrature:

/f(y|u)f(u )du ~ Flylu)f( u)

o(u; NLPaO'LP
/ f(ylorpx + pip)f(oLpx + puip)
B(x)

(change of variable: x = (u— uip)/oLp)

¢(U pip,oip)du =

oL pd(x)dx

Prediction of random effects for GLMM

Conditional mean
E[UlY =y] = /uf(u\y)du
is minimum mean square error predictor, i.e.
E(U — U)?
is minimal with = H(Y) where H(y) = E[U|Y = y]

Difficult to analytically evaluate

BUY =] = [ uf(yl)f(a)/F(y)du

~
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Advantage

Fylu)f(u) _ Flylowpx+ pup)floex +pp) (u—prp)/owp

o(u; pLp,oip) B(x)
close to constant (f(y)) — hence adaptive G-H quadrature very
accurate.

GH scheme with n = 5:

2.020 0.959 0.0000000 -0.959 -2.020
0.011 0.222 0.533 0.222 0.011
(x's are roots of Hermite polynomial computed using ghq in library

glmmML).

(GH schmes for n =5 and n = 10 available on web page)
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Computation of conditional expectations (prediction)

By =] = [ o0 -

ﬁ /(O_LPX_’_MLP) f(ylaLPX + M;/Z))(’;(O—LPX + MLP)O’[_P(ZS(X)dX

Note:

f(ylorpx + pip)f(orpx + puip)
oLp
¢(x)

behaves like a first order polynomial in x - hence GH still accurate.

(oLpx + piLp)



Difficult cases for numerical integration - dimension m > 1

» correlated random effects
» crossed random effects

» nested random effects

Not possible to factorize likelihood into low-dimensional integrals

Number of quadrature points = k™ where k is number of
quadrature points for 1D — hence numerical quadrature may not
be feasible.

Alternatives: PQL and Laplace-approximation or Monte Carlo
computation.

Importance sampling
Consider Z ~ f and suppose we wish to evaluate Eh(Z) where
h(Z) has large variance.

Suppose we can find density g so that

M ~ const and h(z)f(z z
2) t d h(z)f(z) >0=g(z) >0
Then
42) = [ MOy, — 5MOI)
g(2) g(Y)
where Y ~ g.

Note variance of h(Y)f(Y)/g(Y) small so estimate

L~ (YY)
BHZ)~ T vy

has small Monte Carlo error.
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Monte Carlo computation of likelihood for GLMM

Likelihood function is an expectation:

LO)=f(y:0) = [ fylu; B)f(u;7%)du = E2f(y|U; B)

Rm

Use Monte Carlo simulations to approximate expectation.

NB: also applicable in high dimensions

Importance sampling for GLMM
g(+) probability density on R™.

u; U'T2
L(e):/Rf(y|u;ﬂ)f(u;72)du:/R—f(y' '5():)( 7’)
gV B)f(ViT?)

g(v)

L(0) ~ Lis,n(0) = : Z f(yVI;gfi/f’(Vl;#) where V! ~ g(),1=1,...

M I=1 )

Find h so Var%)\gvﬂ small.

VarLs n(0) < oo if f(y|v;0)f(v;0)/g(v) bounded (i.e. use g(-)

with heavy tails).

g(u)du =

where V ~ g().
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Simple Monte Carlo: g(u) = f(u; 72)

M@:iéfUMﬁVﬁwﬁMUZEﬂﬂﬂUﬂ)%LMKW):

M
1
M Z f(y|U'; )  where U' ~ N(0,72) independent

Monte Carlo variance:

Var(Lswc(0)) = %Varf(ywl; 3)
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Possibility: Note

Fylu, B)F(ui®) o = cons
W_f(yﬂ)—/—(e)— t

Laplace: U|Y =y ~ N(urp,07p)
Use g(-) density for N(u.p,07p) or t,(uLp, oFp)-distribution:

f B (u; 2

(o) 7?) _
g(u)

so small variance.

Simulation straightforward.

Note: ‘Monte Carlo version’ of adaptive Gaussian quadrature.

Estimate Varf(y|U?; 3) using empirical variance estimate based on
fylUhB), I=1,...,M:

(F(y|U"; B) = Lsmc(8))

uMg

Often Varf(y|U?; ) is large so large M is needed.

Increasing dimension leads to worse performance (useless in high
dimensions)

Possibility: Consider fixed 6p:

g(u) = f(uly,0o) = f(y|u; 00)f(u;60)/L(60)

Then
fyluﬁ ) B Fly|u; B)F(u; 72)
/R D R = 00 | gy =
\UB ) LO) . [fUIUBFUT)
[ (v[U; Bo)F UTo)|Y_y}@L90)_Ego[f(Y|U;5o)f(U;_T§)|Y_y}

So we can estimate ratio L(0)/L(6p) where L(6p) is unknown
constant.

This suffices for finding MLE:

arg max L(6) = arg max

where U; ~ f(uly; 6p)

16 /27



Simulation of random variables

Direct methods exists for many standard distributions (normal,
binomial, t, etc.: rnorm(), rbinom(), rt() etc.)

Suppose f is a non-standard density but
f(z) < Kg(2)

for some constant K and standard density g.

Then we may apply rejection sampling:

1. Generate Y ~ g and W ~ unif{0, 1].
2. 1f W< }?g((y\)) return Y (accept); otherwise go to 1 (reject).

Note probability of accept is 1/K.

If f is high-dimensional density it may be hard to find g with small
K so rejection sampling mainly useful in small dimensions.

MCMC is then useful alternative (later).

Prediction of U using conditional simulation

Compute Monte Carlo estimate of E(U|Y = y) using conditional
simulations of U|Y = y or importance sampling.

M
1 m m
E(UIY =y) =22 D U™ U™~ f(uly)
m=1

We can also evaluate e.g. P(U; > cly) or P(U; > U, #i|Y) etc.
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Proof of rejection sampling:

compute P(Y < ylaccept) = P(Y < y|W < %)

Conditional simulation of U|Y = y using rejection
sampling

Note
fy|u; Bo)f(u; 78)/F(yi 60) < K tu(u; urp, otp)

for some constant K.

Rejection sampling:
1. Generate V ~ t,(up,0%p) and W ~ Unif(]0, 1[)

2. Return V if W < f(Vly;60)/(K t(V; uip,07p)); otherwise
go to 1.
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Maximization of likelihood using Newton-Raphson EM-algorithm

Let q
Voly, u) = 46 log F(y, ult) Given current estimate 6;:
Then d
u(f) = 75 log L(6) = Eo[Vo(y, U)|Y = y] 1. (E) compute Q(6;,0) = Eg,[log f(y, U|0)|Y = y]
and 2. (M) 6141 = argmax, Q(6,,6).
() = — d? log L(6) For LNMM E-step can be computed explicitly (Jiang page 165)
= doTde & but seems pointless as likelihood is available in closed form.

= —(Eo[dVa(y, U)/d0T|Y = y] — Varg[Vy(y, U)|Y = y])
For GLMMs (E) step needs numerical integration or Monte Carlo.
Newton-Raphson:
Convergence of EM-algorithm can be quite slow. Maximization of
011 = 0; + ()~ u(6)) ikeli i i
+1 likelihood using Newton-Raphson seems better alternative.

All unknown expectations and variances can be estimated using
the previous numerical integration or Monte Carlo methods !
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Overview of Jiang page 165-171 Case study: non-linear mixed effects model for cow mats
data
Compression vs. pressure for two brands
of mats

Page 165-167 (Monte Carlo) EM for linear mixed model and
threshold model.

Non-linear relation

ab + cx¢
b+xd’

Page 168-169: Newton-Rahpson and importance sampling.
y = mmf(x) =
Page 170-171: Monte Carlo EM with adaptive importance

sampling (t-distribution + Laplace approximation) Random variation between

mats of same brand, small
measurement noise.

compression
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Simulated data from the two models:

Fixed effects: residual standard With random effects: residual
error 0.72 standard error 0.17

Estimation of non-linear model with fixed effects:

nlsfit=nls(nedtryk mmf (tryk,a,b,c,d),start=
c(a=0.1,b=1.670,c=80,d=0.6) ,data=mattressdatal)

Estimation of non-linear model with a, b, ¢ as random effects:

nlmerfit=nlmer (nedtryk mmfnlmer(tryk,a,b,c,d)” (a|lmatno)+
(b|matno)+(c|matno) ,mattressdatal,start=c(a=0.04,b=1.64,c=74,d=0.64))

Std. err. for a, b, ¢ are 0.64,0.05

and 0.14
Random effects model gives much better representation of

variability in data.

N
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NB: to assess influence of variability of different parameters we
need to look at partial derivatives (sensitivities) wrt. these
parameters.

Exercises

1. Exercise 4.3 on page 229 in Jiang.

2. R exercises on exercise-sheets exercises6.pdf and
exercises?7.pdf.

3. Check formulas for u(6) and j(#). How can these expression
be computed using importance sampling 7
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