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Outline for today

◮ linear mixed models

◮ the likelihood function

◮ maximum likelihood estimation

◮ restricted maximum likelihood estimation and ANOVA
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Some further useful results

◮ suppose Y is partitioned into Y1 and Y2 with corresponding
partitioning of Σ into Σij , i = 1, 2. Then Y1 and Y2 are
independent ⇔ Σ12 = Σ21 = 0.

◮ AY and BY independent ⇔ AΣBT = 0 (Jiang, C.1).

◮ Matrix identities:

(A+ BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

(C−1 + DA−1B)−1DA−1 = CD(BCD + A)−1

(C−1 + B tA−1B)−1B tA−1 = CB t(BCB t + A)−1
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Linear mixed models

Consider mixed model:

Yij = β1 + Ui + β2xij + ǫij

May be written in matrix vector form as

Y = Xβ + ZU + ǫ

where β = (β1, β2)
T, U = (U1, . . . ,Um)

T and
ǫ = (ǫ11, ǫ12, . . . , ǫmk)

T.
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Linear mixed model: general form

Consider model
Y = Xβ + ZU + ǫ

where U ∼ N(0,Ψ) and ǫ ∼ N(0,D) are independent.

All previous models special cases of this.

Then Y has multivariate normal distribution

Y ∼ N(Xβ,ZΨZT + D)
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Inverse of covariance matrix

Assume D positive definite (e.g. scaled identity matrix).

Then ZΨZT + D guaranteed to be positive definite and

(ZΨZT + D)−1 = D−1 − DZ (Ψ−1 + ZTD−1Z )−1ZTD−1

Right hand side may be easier to evaluate if Ψ−1 and ZTD−1Z

sparse (e.g. AR(1) random effects - next slide)
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Example AR(1) - covariance and inverse covariance

Consider U1 = ǫ0 and

Ui = aUi−1 + ǫi , i = 2, . . . ,m

where ǫi independent zero-mean normal with variances Varǫ0 = σ20
and Varǫi = σ2, i > 1.

Then U = Bǫ so U ∼ Nn(0,BCB
T) where

C = diag(σ20 , σ
2, . . . , σ2). Hence Ψ = BCBT and

Ψ−1 = (B−1)TC−1B−1.

Expressions for covariances simplify in the stationary case |a| < 1
and σ20 = σ2/(1− a2).
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Marginal models

If assumption of normality is not tenable, marginal models are
sometimes used.

That is, just specify EY = Xβ and CovY = V (θ) but drop
normality assumption.

Use methods for estimation of β and θ which only depends on
specified mean and covariance (quasi-likelihood/generalized
estimating equations).

Inference for random effects not possible.
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Balanced mixed models

Balanced mixed models arise when model specified using
cross-combinations of balanced factors/grouping variables or
nested factors.

Example: balanced two-way analysis of variance.

Example: nested model for reflectance measurements.

For such models very nice inference results are available (later).

Can be written as linear mixed models with Z -matrix of the form
given below on page 5 in Jiang.
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Likelihood for linear mixed model

log likelihood for linear mixed model:

−
1

2
log(|Σ(ψ)|) −

1

2
(y − Xβ)TΣ(ψ)−1(y − Xβ))

ψ: parameters for Σ(ψ) (e.g. variance components)
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MLE and weighted least squares

Assume ψ known. MLE for β is weighted least squares estimate

β̂(ψ) = argmin
β

(y − Xβ)TΣ(ψ)−1(y − Xβ)

Differentiate and equate to zero:

XTΣ(ψ)−1(y − Xβ) = 0 ⇔ β̂(ψ) = (XTΣ−1X )−1XTΣ(ψ)−1y

(provided relevant inverses exist)

Covariance parameters for ψ: often numerical optimization is
needed to maximize profile likelihood

−
1

2
log(|Σ(ψ)|) −

1

2
(y − X β̂(ψ))TΣ(ψ)−1(y − X β̂(ψ))
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A geometric approach to estimation - orthogonal

projections

Suppose L subspace of Rn. Let L⊥ = {w ∈ R
n|w • v for all v ∈ L}.

P orthogonal projection on L if P2 = P , PT = P and L = spanP .

Then x = v + w where v = Px ∈ L and w = (I − P)x ∈ L⊥. By
Pythagoras, Px minimizes ‖x − v‖ over v ∈ L. This implies

1. decomposition x = v + w where v ∈ L and w ∈ L⊥ is unique.

2. if Q and P are both orthogonal projections on L then P = Q.
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Estimation using orthogonal projections

Suppose Y ∼ Nn(µ, τ
2I ), µ = Xβ. Let P be orthogonal projection

on L = span(X ) (assuming X full rank, P = X (XTX )−1XT).

Then by Pythagoras, ‖Y − Xβ‖2 = ‖Y − PY ‖2 + ‖PY − Xβ‖2.
Hence µ̂ = Py and β̂ = (XTX )−1XTy .

Moreover τ̂2 = ‖Y − PY ‖2/n = ‖Y − X β̂‖2/n.

Suppose now Y ∼ Nn(µ, τ
2V ) where V = LLT fixed. Then MLE

based on Y and Ỹ = L−1Y equivalent. Note Cov(Ỹ ) = τ2I and
EY = L−1Xβ = X̃β. Hence by the above,

β̂ = (X̃TX̃ )−1X̃Tỹ = (XTV−1X )−1XTV−1y

and
τ̂2 = (y − X β̂)V−1(y − X β̂)/n
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Section 1.8 in Jiang - alternative derivation

Suppose Covǫ = τ2I and CovU = Ψ = σ2L(θ)L(θ)T

Then
Σ = τ2(I + φZL(θ)L(θ)TZT) = τ2V (θ, φ)

where φ = σ2/τ2.

Given φ and θ,

β̂(φ, θ) = (XTV−1(φ, θ)X )−1XTV (ψ, θ)−1y

and

τ̂2(φ, θ) =
1

n
(y − X β̂(φ, θ))TV (ψ, θ)−1(y − X β̂(φ, θ))
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Then use

V (ψ, θ)−1 = (I + φZL(θ)L(θ)TZT)−1 =

I − Z (φ−1(L(θ)T)−1L(θ) + ZTZ )−1ZT

and
|In + φZL(θ)L(θ)TZT| = |Im + φL(θ)L(θ)TZTZ |

to arrive at the results in Jiang, section 1.8.

Profile log likelihood for θ:

l(θ) = −
1

2
log |τ2(φ, θ)V (ψ, θ)| −

n

2
=

−
n

2
log τ2(φ, θ)−

1

2
log |Im + φL(θ)L(θ)TZTZ |
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Some further useful matrix results

Consider

A =

[

A11 A12

A21 A22

]

Suppose A11 is invertible. Then |A| = |A11||A22 − A21A
−1
11 A12|.

Proof: use that
[

A11 A12

0 A22 − A21A
−1
11 A12

]

=

[

I 0

−A21A
−1
11 I

]

A

Moreover, if A : n × k and B : k × n then

|In + AB | = |Ik + BA|

Proof: use above result on
[

In −A

B Ik

]
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MLE’s of variances biased or inconsistent

Simple normal sample E σ̂2 = σ2(n − 1)/n (later consider balanced
one-way anova too, Jiang, page 12)

Bias arise from estimation of µ (
∑

i(yi − µ)2 vs
∑

i (yi − ȳ·)
2).

Neyman-Scott example: yij = µi + ǫij , i = 1, . . . ,m and j = 1, 2.
MLE of τ2 not consistent as n tends to infinity.
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REML (restricted/residual maximum likelihood)

Idea: linear transform of data which eliminates mean. Suppose
design matrix X : n × p and let A : n × (n − p) have columns
spanning the orthogonal complement L⊥ of L = spanX . Then
ATX = 0.

Transformed data ((n − p)× 1)

Ỹ = ATY = ATZα+ ATǫ

has mean 0 and covariance matrix ATΣ(ψ)A. Then proceed as for
MLE.

NB: suppose A and B both span L⊥. Then the same REML
estimate of ψ is obtained (proof B = AC for an invertible matrix
C , write out likelihoods for Ỹ using A and AC ).
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REML

Given REML estimate ψ̂ we use weighted least squares estimate of
β:

β̂ = (XTΣ(ψ̂)−1X )−1XTΣ−1(ψ̂)y
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REML examples

Simple normal sample: A has columns ei − 1n/n, i = 1, . . . , n − 1
where 1n is the n-vector of 1’s and ei is the ith standard basis
vector.

Alternative: use columns ei − en, i = 1, . . . , n − 1.

Neyman-Scott problem: see page 14 in Jiang.
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Implementation of REML (Section 1.8 in Jiang)
Suppose Covǫ = τ2I and CovU = Ψ = σ2L(θ)L(θ)T

Then
Σ = τ2(I + φZL(θ)L(θ)TZT) = τ2V (θ, φ)

where φ = σ2/τ2.

Choose A so that columns form an orthogonal basis for L⊥ where
L = spanX . Then ATA = I and AAT = I − X (XTX )−1XT (since
AAT is a projection matrix).

CovATY = ATΣA = τ2(I + φATZL(θ)L(θ)TZTA)

Hence given (φ, θ) estimate of τ2 is

τ̂2(φ, θ) = Ỹ TỸ−Ỹ TATZ [φ−1(L(θ)L(θ)T)−1+ZTAATZ ]−1ZTAỸ

Finally insert explicit expressions for AAT and ATA.
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Profile REML log likelihood for (φ, θ):

l(φ, θ) = −
n − p

2
log τ̂2(φ, θ)−

1

2
log |(I+φZTAATZL(θ)L(θ)T|−

n − p

2
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Balanced one-way ANOVA
The traditional approach: analysis of variance

Decomposition of variance (i = 1, . . . ,m, j = 1, . . . , k):
∑

ij

(Yij − Ȳ··)
2 =

∑

ij

(Yij − Ȳi ·)
2 + k

∑

i

(Ȳi · − Ȳ··)
2 = SSE + SSA

Expected sums of squares:

ESSE = m(k − 1)τ2

ESSA = k(m − 1)σ2 + (m − 1)τ2

Moment-based estimates:

τ̂2 =
SSE

m(k − 1)

σ̂2 =
SSA/(m − 1)− τ̂2

k
NB: difficulties if unbalanced design of experiment.

NB: σ̂2 may be negative.
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MLE for balanced one-way ANOVA

Let λ = τ2 + kσ2. Solving equations on Jiang page 12 in the
balanced case ki = k leads to (λ = kσ2 + τ2):

µ̂ = ȳ··, τ̂
2 = SSE/m(k − 1), λ̂ = SSA/m

Note: λ̂ biased ⇒ σ̂2 = (λ̂− τ̂2)/k biased.

Eλ̂ = (k(m − 1)σ2 + (m − 1)τ2)/m = k
m − 1

m
σ2 +

m − 1

m
τ2

Asymptotically unbiased as m tends to infinity (then Var(µ̂) tends
to zero)
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REML for balanced one-way ANOVA

E.g. A as for simple normal sample, i.e. ỹij = yij − ȳ··. Then REML
equations for estimating τ2 and σ2 coincide with the moment
equations (Exercise 1.16).

However for REML the estimates always restricted to be positive
(i.e. if ANOVA estimate is negative then REML is on the boundary
of the parameter space).
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Exercises

1. Verify ‘further useful results’ and ‘further useful matrix
results’.

2. Exercises 1.10 in Jiang.

3. formulate random intercept and slope model for Orthodont
data (day 1) as multivariate normal N(µ,Σ). What are the
design matrices X and Z ?

4. Compute Σ−1 when Yi = µ+ Ui + ǫi and random effects
follow stationary AR(1).

5. Show that the REML variance estimate for a simple normal
sample coincides with s2.

6. Compute variance of MLE σ̂2 and s2 given that
∑n

i=1(xi − x̄)2 is σ2χ2(n − 1) (hint: Varχ2(f ) = 2f ). What
happens with the difference between the two estimates when
n tends to infinity ?
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7. Check the formulas for the moment-based estimates in the
one-way ANOVA example.

8. Compute MLE and REML estimates for the Neyman-Scott
example. Compute mean and variance for the estimates of τ2

(Excs 1.8 in Jiang).

9. Show that if A and B both span the orthogonal complement
of spanX then the same REML estimates are obtained from
AY and BY (Excs 1.9 in Jiang).

10. Compute the projection a vector y on a vector v . Compute
the projection of a vector y on spanX when columns in X are
orthogonal.
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