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Outline for today

◮ Likelihood ratio test

◮ Inference for the linear normal model

◮ Balanced one- and two-way ANOVA - test for fixed effects
and variance components

◮ Inference for general linear mixed models
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General objectives

◮ Determine distributions of parameter estimates (confidence
intervals)

◮ Perform tests for hypotheses of interest (e.g. likelihood ratio
tests)
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The linear model
Suppose Y ∼ Nn(µ, τ

2I ), µ = Xβ. Let P be orthogonal projection
on L = span(X ) of dimension d (assuming X full rank,
P = X (XTX )−1XT).

Then µ̂ = PY and τ̂2 = ‖(I − P)Y ‖2/n. It follows directly that µ̂
and τ̂2 are independent. Moreover β̂ = (XTX )−1XTY is the
unique solution to X β̂ = µ̂ and β̂ and τ̂2 are thus independent too.

µ̂ ∼ N(µ, τ2P), β̂ ∼ N(β, τ2(XTX )−1) and τ̂2 ∼ τ2χ2(n − d)/n.

Issue: distribution of β̂ involves unknown τ2. Let vi the i ’th
diagonal element in (XTX )−1. Then β̂i ∼ N(βi , τ

2vi) and

t =
β̂i − βi
√

τ̃2vi
∼

N(0, 1)
√

χ2(n − d)/(n − d)
∼ t(n − d)

where τ̃2 = nτ̂2/(n − d) is REML estimate.
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Confidence intervals can be constructed easily from χ2 and t

distribution (Bo’s course).

We can also use t distribution to test H0 : βi = b0. Small and
large values of

t =
β̂i − b0
√

τ̃2vi

are critical for this hypothesis (note t ∼ t(n − d) under H0).

p-value is the probability of observing larger value of |t| in
repeated experiments than the one actually observed.
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Likelihood ratio tests

Consider a statistical model with parameter space Θ and a
hypothesis H0 : θ ∈ Θ0 where Θ0 ⊂ Θ.

Let θ̂ = argmaxΘ L(θ) and θ̂0 = argmaxΘ0
L(θ).

Then LR = L(θ̂0) ≤ L(θ̂) and the smaller ratio, the less we believe
in H0 (the less data are likely under H0 than under the alternative
θ ∈ Θ \Θ0).

To judge how small LR is we compare LR with its distribution
under H0 - say LR ∼ F under H0.

The p-value is the probability (under H0 and repeated sampling) of
observing a smaller value of LR than the one, lr , actually observed:
p = FLR(lr).
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Often Q = −2 ln LR is used - in which case large values of Q are
critical and p = 1− FQ(q) (q = −2 log(lr)).

The problem is to determine FLR (or FQ). For certain models the
exact distributions are known but in general we need to rely on
asymptotic arguments.
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Back to the linear normal model

Suppose H0 : µ ∈ L0 where L0 ⊂ L is a subspace of L of dimension
d0. The maximized likelihood functions under µ ∈ L and µ ∈ L0 are

(τ̂2)−n/2 exp(−n/2) and (τ̂20 )
−n/2 exp(−n/2)

where τ̂20 = ‖(I − P0)Y ‖2/n. Thus

LR =
(‖(I − P0)Y ‖2

‖(I − P)Y ‖2

)

−n/2

Moreover ‖(I − P0)Y ‖2 = ‖(I − P)Y + (P − P0)Y ‖2 =
‖(I − P)Y ‖2 + ‖(P − P0)Y ‖2. Thus

B = LR2/n =
‖(I − P)Y ‖2

‖(I − P)Y ‖2 + ‖(P − P0)Y ‖2

is beta B((n− d)/2, (d − d0)/2)-distributed.
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Moreover B is in one to one correspondance with

F =
‖(P − P0)Y ‖2/(d − d0)

‖(I − P)Y ‖2/(n − d)
=

‖(P − P0)Y ‖2/(d − d0)

τ̃2

which is F (d − d0, n − d) distributed. Note large values of F and
small values of B are critical.

Note: numerator in F measures differences in estimates of µ under
respectively µ ∈ L and µ ∈ L0. If this is small we tend to believe
µ ∈ L0.

Suppose L0 is obtained from L by removing ith column in X - this
corresponds to H0 : βi = 0. Then F is the squared t statistic for βi
(exercise)
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Beta and F-distributions

χ2(ν) = Γ(ν/2, 2)

B(α,α′) distribution of Γ(α, β)/[Γ(α, β) + Γ(α′, β)] where Γ(α, β)
and Γ(α′, β) independent.

F (f1, f2) distribution of [χ2(f1)/f1]/[χ
2(f2)/f2].
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Tests for variance components and fixed effects in

balanced two-way ANOVA

Factorization of likelihood function:

|Σ|−1/2 exp(−
1

2
(Y − ξ)TΣ−1(Y − ξ)) =

λ
−m/2
P exp(−

1

2λP

‖PPY − P0ξ‖
2)×

(λP×T )
−m(k−1)/2 exp(−

1

2λP×T

‖Q̃P×TY − QT ξ‖
2)×

(λI )
−(n−mk)/2 exp(−

1

2λI

‖QIY ‖2)

Formally equivalent to product of likelihoods for three linear
normal models.
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Suppose we want to test hypothesis of no treatment effect
H0 : βt = 0, t = 1, . . . , k . Note that the only likelihood-factor
which differs under H0 is the second one:

(λP×T )
−m(k−1)/2 exp(−

1

2λP×T

‖Q̃P×TY − QT ξ‖
2)

This corresponds to working with a linear normal model with data
Ỹ = Q̃P×TY , mean vector ξ̃ = QT ξ and variance λP×T .
Therefore

λ̂P×T = ‖QP×TY ‖2/(m(k − 1))
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Under H0, ξ = µ1n whereby ξ̃ = QT ξ = 0. The maximum
likelihood estimate of λP×T under H0 is therefore

λ̂P×T ,0 = ‖Q̃P×TY ‖2/(m(k − 1))

Hence according to the results for the linear normal model, the
likelihood ratio becomes equivalent with the F -statistic

‖QTY ‖2/(k − 1)

‖QP×TY ‖2/((m − 1)(k − 1))

(recall ‖Q̃P×TY ‖2 = ‖Q2
P×TY ‖2 + ‖QTY ‖2)

Note QTY = PTY − P0Y hence
‖QTY ‖2 = SST =

∑

ptr (ȳ·t· − ȳ···)
2 (measures how much

treatment group means differ from total mean)
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Test for variance components

Recall λI = τ2, λP×T = τ2 + nP×Tσ
2
P×T and

λP = τ2 + nP×Tσ
2
P×T + nPσ

2
P .

Hence e.g. σ2
P×T = 0 ⇔ λI = λP×T .

Natural statistic (but not LR) for testing σ2
P×T = 0 is statistic

F =
λ̃P×T

λ̃I

which has F ((m − 1)(k − 1), n −mk) distribution if σ2
P×T = 0.

Big values critical.

Note λ̃P×T = ‖QP×TY ‖2/((m − 1)(k − 1)) so F is identical to
statistic for testing fixed effects of factor P × T in a linear normal
model without random effects.
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Confidence intervals for variance components (Example 2.2

and 2.3 page 67 in Jiang)

Consider one-way ANOVA.

F =
SSA/(m − 1)

SSE/(m(k − 1)
=

λ̃

τ̃2
∼

τ2 + kσ2

τ2
F (m − 1,m(k − 1)) = (1 + kγ)F (m − 1,m(k − 1)

Thus with qL and qU e.g. 2.5% and 97.5% quantiles for
F (m − 1,m(k − 1)) we have

P(qL ≤ F/(1 + kγ) ≤ qU) = 95% ⇔

P((F/qU − 1)/k ≤ γ ≤ (F/qL − 1)/k) = 95%
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Similarly, if we let c = (1, 1, . . . , 1,−(k − 1))/k then
‖c‖2 = 1− 1/k and c orthogonal to 1k . Thereby

ui = ȳi · +

k
∑

j=1

cjyij ∼ N(µ, σ2 + τ2)

and ui ’s independent. Thus

∑m
i=1(ui − ū)2

σ2 + τ2
∼ χ2(m − 1)

(as Jiang remarks on page 66, confidence intervals often
constructed based on ‘pivotal’ quantities where subtracting or
dividing with the parameter of interest leads to a quantity with
known distribution)
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Example F and t tests in linear model

#fit model with sex specific intercepts and slopes

> ort1=lm(distance~age+age:factor(Sex)+factor(Sex))

> summary(ort1)

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.3406 1.4162 11.538 < 2e-16 ***

age 0.7844 0.1262 6.217 1.07e-08 ***

factor(Sex)Female 1.0321 2.2188 0.465 0.643

age:factor(Sex)Female -0.3048 0.1977 -1.542 0.126

...

> #compute F-tests respecting hierarchical principle

> drop1(ort1,test="F")

Single term deletions

....

Df Sum of Sq RSS AIC F value Pr(F)

<none> 529.76 179.75

age:factor(Sex) 1 12.11 541.87 180.19 2.3782 0.1261

age:Sex not significant ! (but recall, model is wrong)
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Tests continued

Using anova() to test reduction from ort1 to ort2

> ort2=lm(distance~age+factor(Sex))

> anova(ort1,ort2)

Analysis of Variance Table

Model 1: distance ~ age + age:factor(Sex) + factor(Sex)

Model 2: distance ~ age + factor(Sex)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 104 529.76

2 105 541.87 -1 -12.114 2.3782 0.1261
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Tests continued

> ort2=lm(distance~age+factor(Sex))

> drop1(ort2,test="F")

Single term deletions

Model:

distance ~ age + factor(Sex)

Df Sum of Sq RSS AIC F value Pr(F)

<none> 541.87 180.19

age 1 235.36 777.23 217.15 45.606 8.253e-10 ***

factor(Sex) 1 140.46 682.34 203.09 27.218 9.198e-07 ***

both age and sex significant (but model still wrong)
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Test of card board variance components

One-way anova: test of no card board heterogeneity. F-test:

F =
λ̃P

λ̃I

=
0.0273

0.00006
= 450

which is F (33, 102) distributed. p-value

> 1-pf(450,33,102)

[1] 0
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Implementation in R

For cardboard/reflectance data, m = 34 and k = 4.

> anova(lm(Reflektans~factor(Pap.nr.)))

Analysis of Variance Table

Response: Reflektans

Df Sum Sq Mean Sq F value Pr(>F)

factor(Pap.nr.) 33 0.90088 0.02730 470.7 < 2.2e-16 ***

Residuals 102 0.00592 0.00006

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Using anova to test reduction

> m1=lm(Reflektans~factor(Pap.nr.))

> m2=lm(Reflektans~1)

> anova(m2,m1)

Analysis of Variance Table

Model 1: Reflektans ~ 1

Model 2: Reflektans ~ factor(Pap.nr.)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 135 0.90679

2 102 0.00592 33 0.90088 470.7 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Exercises

1. Suppose L is spanned by columns v1, . . . , vd in X and L0 is
spanned by X0 obtained by removing first column v1 from X .
Consider the linear model Y ∼ N(Xβ, τ I 2)

1.1 show that L = L0 ⊕ Lu where Lu is spanned by u = v1 − P0v1.
1.2 show that the maximum likelihood estimate of β1 is

β̂1 = Y · u/‖u‖2.
1.3 show that the F -test statistic for the reduction L → L0 is equal

to the squared t-test statistic.

2. Write down all the details of how to obtain the F-test for the
fixed factor in the two-way ANOVA.

3. In a one-way ANOVA with one factor A show that the F-test
for no fixed effect of A is equal to the F-test for zero variance
of the random effects in the mixed ANOVA model with a
random effect at each level of A.
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