Frequentist inference for linear mixed models - continued

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

March 12, 2012

Let Q_1 orthogonal projection on V_1 and Q_I orthogonal projection

1/13

$$Q_1 Y \sim N(0, \tau^2 Q_1 + \sigma_1^2 Q_1 Z_1 Z_1^{\mathsf{T}} Q_1) \quad Q_1 Y \sim N(0, \tau^2 Q_1)$$

Under $H_1 : \sigma_1^2 = 0$,

on V_I . Then

$$\frac{\|Q_1Y\|^2/d_1}{\|Q_IY\|^2/d_I} \sim F(d_1, d_I)$$

Exact tests for variance components in general mixed ANOVA model (Jiang page 51-53)

Consider

$$Y = X\beta + \sum_{i=1}^{K} Z_i \alpha_i + \epsilon$$

where $\alpha_i \sim N_{d_i}(0, \sigma_i^2 I)$'s and $\epsilon \sim N_n(0, \tau^2 I)$ independent.

Let
$$L=\text{span}\{X,Z_1,\ldots,Z_K\}$$
 and $L_{-1}=\text{span}\{X,Z_2,\ldots,Z_K\}.$ Then

$$\mathbb{R}^n = L_{-1} \oplus V_1 \oplus V_I$$

where $V_1 = L \ominus L_{-1}$.

2/13

Application to two-way balanced ANOVA (Jiang page 52-53)

Suppose random effects factors A, B and $A \times B$.

$$\mathbb{R}^n = L_0 \oplus V_A \oplus V_B \oplus V_{A \times B} \oplus V_I$$

If $\sigma_{A\times B}^2=0$ then preceeding results leads to consideration of

$$F = \frac{\|Q_A Y\|^2/(a-1)}{\|(Q_{A \times B} + Q_I)Y\|^2/(n - (a+b-1))}$$

for testing $\sigma_A^2 = 0$.

If $\sigma_{A\times B}^2 \neq 0$ we can consider

$$\frac{\|Q_AY\|^2/(a-1)}{\|Q_{A\times B}Y\|^2/((a-1)(b-1))}$$

for testing $\sigma_A^2 = 0$.

Confidence intervals for regression parameters (Jiang page 70-72)

Suppose $Y \sim N(X\beta, \tau^2 V)$ where V known. Inference is equivalent for $\tilde{Y} \sim N(\tilde{X}\beta, \tau^2 I)$ obtained by transforming with L^{-1} , $V = LL^{T}$.

MLE of $\mu = X\beta$ and β are

$$\hat{\mu} = X(X^{\mathsf{T}}V^{-1}X)^{-1}X^{\mathsf{T}}V^{-1}Y$$
$$\hat{\beta} = (X^{\mathsf{T}}V^{-1}X)^{-1}X^{\mathsf{T}}V^{-1}Y = (X^{\mathsf{T}}V^{-1}X)^{-1}X^{\mathsf{T}}V^{-1}\hat{\mu}$$

Since

$$\hat{\beta} \sim N(\beta, \tau^2 (X^\mathsf{T} V^{-1} X)^{-1})$$

we can obtain confidence intervals using pivotal t or F statistics.

If V contains unknown parameters θ things in general more complicated since $\hat{\beta}$ and its distribution then may depend on these unknowns (MLE of $\hat{\beta}$: $V(\theta)$ substituted by $V(\hat{\theta})$ where $\hat{\theta}$ MLE).

If $\hat{\theta}$ consistent then $\hat{\beta}$ will be asymptotically normal and we may use $\hat{\tau}^2(X^TV^{-1}(\hat{\theta})X)^{-1})$ as approximate covariance matrix. This gives approximate confidence intervals as (2.29) in Jiang.

5/13

WLS and BLUE

Suppose that Y has mean $X\beta$ and known covariance matrix Σ (but Y may not be normal). Then

$$(X^\mathsf{T}\Sigma^{-1}X)^{-1}X^\mathsf{T}\Sigma^{-1}Y$$

is a weighted least squares estimate since it minimizes

$$(Y - X\beta)^{\mathsf{T}} \Sigma^{-1} (Y - X\beta).$$

It is also the best linear unbiased estimate (BLUE) - that is the unbiased estimate with smallest variance in the sense that

$$\mathbb{V}\mathrm{ar}\tilde{\beta} - \mathbb{V}\mathrm{ar}\hat{\beta}$$

is positive semi-definite for any other linear unbiased estimate $\tilde{\beta}$.

Proof of BLUE: Suppose that $\hat{\mu}=PY$ is the weighted least squares estimate and that $\tilde{\mu}=BY$ is another unbiased linear estimate of μ . Unbiasedness means that $\mathbb{E}\hat{\mu}=\mathbb{E}\tilde{\mu}=\mu$ for all μ . Thus $\mathbb{E}(P-B)Y=(P-B)\mu=0$ for all μ and (P-B)Px=0 for any $x\in\mathbb{R}^n$. It now follows that $x^T(\mathbb{V}\mathrm{ar}\tilde{\mu}-\mathbb{V}\mathrm{ar}\hat{\mu})x=x^T\mathbb{V}\mathrm{ar}(\tilde{\mu}-\hat{\mu})x\geq 0$

Concerning $\hat{\beta}$ and $\tilde{\beta}$ we may write these as $C\hat{\mu}$ and $C\tilde{\mu}$ for some matrix C provided X has full rank (C then left-inverse of X).

7/13 8/13

Asymptotic inference

Let $I_n(\theta) = \log L_n(\theta)$ denote the log likelihood function and let

$$s_n(\theta) = \frac{\mathrm{d}I_n(\theta)}{\mathrm{d}\theta} \quad j_n(\theta) = -\frac{\mathrm{d}s_n(\theta)}{\mathrm{d}\theta^{\mathrm{T}}}$$

denote the score function and observed information. n is 'number of observations'

By a first order Taylor expansion around $\hat{\theta}_n$,

$$s_n(\theta) \approx (\hat{\theta}_n - \theta) j_n(\hat{\theta}_n)$$

Recall $\mathbb{V}ars_n(\theta) = i_n(\theta)$ where $i_n(\theta)$ is the Fisher information.

Suppose there is normalizing sequence c_n so $c_n^{-1}i_n(\theta) \to i(\theta)$, $c_n^{-1}(j_n(\theta)-i(\theta)) \to 0$, and

$$\sqrt{c_n^{-1}}s_n(\theta)\approx N(0,i(\theta))$$

(CLT). Then

$$\sqrt{c_n}(\hat{\theta}_n - \theta) \approx N(0, i(\theta)^{-1})$$

9 / 13

Asymptotic distribution of likelihood ratio

Suppose $H_0: \theta \in \Theta_0$ with alternative hypothesis $\theta \in \Theta$. Then under 'regularity' conditions

$$-2 \log Q = -2[I(\hat{\theta}_{0,n}) - I(\hat{\theta}_n) \approx \chi^2(d - d_0)]$$

where d and d_0 number of 'free' parameters under H and alternative, respectively.

Limitations of asymptotic results:

- ▶ based on Taylor expansions around θ . Problematic if θ on boundary of parameter space under H_0 (e.g. when testing variances equal to zero).
- Need asymptotic normality of $s_n(\theta)$. Not always obvious how to use CLT for general linear mixed models what should tend to infinity? (for independent observations we assume number of observations $n = c_n$ tend to infinity and use CLT)

Wald-test

Wald-test: suppose we wish to test $H: K\theta = c$ for some $K: d \times p$ and $c \in \mathbb{R}^d$. Under hypothesis H,

$$T = \sqrt{c_n} (Ki(\theta)^{-1} K^{\mathsf{T}})^{-1/2} [K \hat{\theta}_n - c] \approx N_d(0, I)$$

and

$$T^2 \approx \chi^2(d)$$

10 / 13

Faraway (2006), section 8.2 recommends parametric bootstrap for testing variance components:

- 1. Simulate *iid* data Y_1^*, \dots, Y_B^* from model under null hypothesis.
- 2. Recompute likelihood ratio test for each simulated data set.
- 3. Compare observed LR with simulated distribution.

Exercises

- 1. Excs. 2.1, 2.3, 2.14 og 2.15 i Jiang.
- 2. Show that $\mathbb{V}\mathrm{ar}\tilde{\beta} \mathbb{V}\mathrm{ar}\hat{\beta}$ positive definite implies $\mathbb{V}\mathrm{ar}c^{\mathsf{T}}\tilde{\beta} \mathbb{V}\mathrm{ar}c^{\mathsf{T}}\hat{\beta} > 0$ for any vector c (of same dimension as β).
- 3. Sketch arguments of asymptotic normality of parameter estimates in the case of *iid* observations.