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Exact tests for variance components in general mixed

ANOVA model (Jiang page 51-53)

Consider

Y = Xβ +

K
∑

i=1

Ziαi + ǫ

where αi ∼ Ndi
(0, σ2

i
I )’s and ǫ ∼ Nn(0, τ

2I ) independent.

Let L = span{X ,Z1, . . . ,ZK} and L−1 = span{X ,Z2, . . . ,ZK}.
Then

R
n = L−1 ⊕ V1 ⊕ VI

where V1 = L⊖ L−1.
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Let Q1 orthogonal projection on V1 and QI orthogonal projection
on VI . Then

Q1Y ∼ N(0, τ2Q1 + σ2
1Q1Z1Z

T
1 Q1) QIY ∼ N(0, τ2QI )

Under H1 : σ2
1 = 0,

‖Q1Y ‖2/d1
‖QIY ‖2/dI

∼ F (d1, dI )
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Application to two-way balanced ANOVA (Jiang page

52-53)
Suppose random effects factors A, B and A× B .

R
n = L0 ⊕ VA ⊕ VB ⊕ VA×B ⊕ VI

If σ2
A×B

= 0 then preceeding results leads to consideration of

F =
‖QAY ‖2/(a − 1)

‖(QA×B +QI )Y ‖2/(n − (a + b − 1)

for testing σ2
A
= 0.

If σ2
A×B

6= 0 we can consider

‖QAY ‖2/(a − 1)

‖QA×BY ‖2/((a − 1)(b − 1))

for testing σ2
A
= 0.
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Confidence intervals for regression parameters (Jiang page

70-72)

Suppose Y ∼ N(Xβ, τ2V ) where V known. Inference is equivalent
for Ỹ ∼ N(X̃β, τ2I ) obtained by transforming with L−1,V = LLT.

MLE of µ = Xβ and β are

µ̂ = X (XTV−1X )−1XTV−1Y

β̂ = (XTV−1X )−1XTV−1Y = (XTV−1X )−1XTV−1µ̂

Since
β̂ ∼ N(β, τ2(XTV−1X )−1)

we can obtain confidence intervals using pivotal t or F statistics.
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If V contains unknown parameters θ things in general more
complicated since β̂ and its distribution then may depend on these
unknowns (MLE of β̂: V (θ) substituted by V (θ̂) where θ̂ MLE).

If θ̂ consistent then β̂ will be asymptotically normal and we may
use τ̂2(XTV−1(θ̂)X )−1) as approximate covariance matrix. This
gives approximate confidence intervals as (2.29) in Jiang.
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WLS and BLUE

Suppose that Y has mean Xβ and known covariance matrix Σ
(but Y may not be normal). Then

(XTΣ−1X )−1XTΣ−1Y

is a weighted least squares estimate since it minimizes

(Y − Xβ)TΣ−1(Y − Xβ).

It is also the best linear unbiased estimate (BLUE) - that is the
unbiased estimate with smallest variance in the sense that

Varβ̃ − Varβ̂

is positive semi-definite for any other linear unbiased estimate β̃.
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Proof of BLUE: Suppose that µ̂ = PY is the weighted least
squares estimate and that µ̃ = BY is another unbiased linear
estimate of µ. Unbiasedness means that Eµ̂ = Eµ̃ = µ for all µ.
Thus E(P − B)Y = (P − B)µ = 0 for all µ and (P − B)Px = 0
for any x ∈ R

n. It now follows that
xT(Varµ̃− Varµ̂)x = xTVar(µ̃ − µ̂)x ≥ 0

Concerning β̂ and β̃ we may write these as C µ̂ and C µ̃ for some
matrix C provided X has full rank (C then left-inverse of X ).
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Asymptotic inference
Let ln(θ) = log Ln(θ) denote the log likelihood function and let

sn(θ) =
dln(θ)

dθ
jn(θ) = −dsn(θ)

dθT

denote the score function and observed information. n is ‘number
of observations’

By a first order Taylor expansion around θ̂n,

sn(θ) ≈ (θ̂n − θ)jn(θ̂n)

Recall Varsn(θ) = in(θ) where in(θ) is the Fisher information.

Suppose there is normalizing sequence cn so c−1
n in(θ) → i(θ),

c−1
n (jn(θ)− i(θ)) → 0, and

√

c−1
n sn(θ) ≈ N(0, i(θ))

(CLT). Then √
cn(θ̂n − θ) ≈ N(0, i(θ)−1)
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Wald-test

Wald-test: suppose we wish to test H : Kθ = c for some K : d × p

and c ∈ R
d . Under hypothesis H,

T =
√
cn(Ki(θ)

−1KT)−1/2[K θ̂n − c] ≈ Nd (0, I )

and
T 2 ≈ χ2(d)
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Asymptotic distribution of likelihood ratio

Suppose H0 : θ ∈ Θ0 with alternative hypothesis θ ∈ Θ. Then
under ‘regularity’ conditions

−2 logQ = −2[l(θ̂0,n)− l(θ̂n) ≈ χ2(d − d0)

where d and d0 number of ‘free’ parameters under H and
alternative, respectively.

Limitations of asymptotic results:

◮ based on Taylor expansions around θ. Problematic if θ on
boundary of parameter space under H0 (e.g. when testing
variances equal to zero).

◮ Need asymptotic normality of sn(θ). Not always obvious how
to use CLT for general linear mixed models - what should tend
to infinity ? (for independent observations we assume number
of observations n = cn tend to infinity and use CLT)
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Faraway (2006), section 8.2 recommends parametric bootstrap for
testing variance components:

1. Simulate iid data Y ∗

1 , . . . ,Y
∗

B
from model under null

hypothesis.

2. Recompute likelihood ratio test for each simulated data set.

3. Compare observed LR with simulated distribution.
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Exercises

1. Excs. 2.1, 2.3, 2.14 og 2.15 i Jiang.

2. Show that Varβ̃ − Varβ̂ positive definite implies
VarcTβ̃ −VarcT β̂ > 0 for any vector c (of same dimension
as β).

3. Sketch arguments of asymptotic normality of parameter
estimates in the case of iid observations.
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