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Topics of the day

◮ Logistic regression

◮ Generalized linear models

◮ Poisson regression
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O-ring failure data
Number of O-rings (out of 6) with evidence of damage and
temperature was recorded for 23 missions previous to Challenger
space shuttle disaster.

Fractions of damaged O-rings
versus temperature and least
squares fit:
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Problems with least squares fit:

◮ predicts proportions outside
[0, 1].

◮ assumes variance
homogeneity (same precision
for all observations).

◮ proportions not normally
distributed.
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Binomial model for o-ring data

Yi number of failures and ti temperature for ith mission.

Yi ∼ b(6, pi ) where pi probability of failure for ith mission.

Variance heterogeneity:

VarYi = nipi(1− pi )

How do we model dependence of pi on ti ?

Linear model:
pi = α+ βti

Problem: pi not restricted to [0, 1] !
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Logistic regression

Consider logit transformation:

η = logit(p) = log(
p

1− p
)

Note: logit injective function from [0, 1] to R. Hence we may apply
linear model to η and transform back:

η = α+ βt ⇔ p =
exp(α + βt)

exp(α+ βt) + 1

Note: p guaranteed to be in [0, 1]
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Plots of logit, inverse logit, and probit
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Probit transformation: pi = Φ(ηi ) where Φ cumulative distribution
function of standard normal variable (Φ(u) = P(U ≤ u).)

Regression parameter for logistic roughly 1.8 times regression
parameter for probit since Φ more steep than inverse logit.

6 / 23

Logistic regression and odds

Odds for a failure in ith mission is

oi =
pi

1− pi
= exp(ηi )

and odds ratio is

oi
oj

= exp(ηi − ηj ) = exp(β(ti − tj))

Example: to double odds we need

2 = exp(β(ti − tj)) ⇔ ti − tj = log(2)/β
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Estimation

Likelihood function for simple logistic regression
logit(pi ) = α+ βxi :

L(α, β) =
∏

i

pyii (1− pi )
ni−yi

where

pi =
exp(α+ βxi )

1 + exp(α+ βxi)

MLE (α̂, β̂) found by iterative maximization (Newton-Raphson)

More generally we may have multiple explanatory variables:

logit(pi ) = β1x1i + . . .+ βpxpi
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Deviance
Predicted observation for current model:

ŷi = ni p̂i logitp̂i = β̂1x1i + . . .+ β̂pxpi

Saturated model: no restrictions on pi so p̂sati = yi/ni and
ŷ sati = yi (perfect fit).

Residual deviance D is -2 times the log of the ratio between
L(β̂1, . . . , β̂p) and likelihood Lsat for the saturated model.

D = 2
n∑

i=1

[yi log(yi/ŷi ) + (ni − yi) log((ni − yi)/(ni − ŷi ))]

If ni not too small D ≈ χ2(n − p) where p is the number of
parameters for current model. If this is the case, D may be used
for goodness-of-fit assessment.

Null deviance is log ratio between maximum likelihood for model
with only intercept and Lsat.
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Logistic regression in R

> out=glm(cbind(damage,6-damage)~temp,family=binomial(logit))

> summary(out)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.66299 3.29626 3.538 0.000403 ***

temp -0.21623 0.05318 -4.066 4.78e-05 ***

...

Null deviance: 38.898 on 22 degrees of freedom

Residual deviance: 16.912 on 21 degrees of freedom

...

Residual deviance not large compared with numbers of degrees of
freedom.

10 / 23

Hypothesis testing

Wald test:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.66299 3.29626 3.538 0.000403 ***

temp -0.21623 0.05318 -4.066 4.78e-05 ***

Temperature highly significant.
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Same conclusion using likelihood ratio test:

> out2=glm(cbind(damage,6-damage)~1,family=binomial(logit)

> anova(out2,out,test="Chisq")

Analysis of Deviance Table

Model 1: cbind(damage, 6 - damage) ~ 1

Model 2: cbind(damage, 6 - damage) ~ temp

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 22 38.898

2 21 16.912 1 21.985 2.747e-06

(log likelihood ratio approximately χ2 distributed)

(alternatively you may use drop1(out,test="Chisq"))
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Generalized linear models

Suppose Z is random variable with expectation EZ = µ ∈ M
where M ⊂ R. Idea: use invertible link function g : M → R and
apply linear modelling to η = g(µ).

Binomial data: Z = Y /n, Y ∼ b(n, p). µ = p ∈ M =]0, 1[. g(·)
e.g. logistic or probit.

Poisson data: Z ∼ pois(λ). µ = λ > 0. g e.g. log.

Many other possibilities (McCullagh and Nelder, Faraway, Dobson)
e.g. gamma distribution and inverse Gaussian for positive
continuous data.

For binomial and Poisson, VarZ = V (µ) determined by µ:
V (µ) = µ(1− µ)/n and V (µ) = µ, respectively.
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Radioactive decay

Intensity of radioactive decay: λ(t) = A exp(at)

Probability of decay within infinitesimally small interval [t, t + dt[
is λ(t)dt and independence between disjoint intervals implies that
times of decays 0 < T1 < T2 < T3 < . . . form an inhomogeneous
Poisson process with intensity function λ(t).

Hence number of decays Xi in time interval [ti , ti+1[ is a Poisson
variable with mean

∫ ti+1

ti

λ(t)dt ≈ ∆iλ(ti ) = exp(log∆i + logA + at)

NB: Xi for disjoint intervals independent.

Simulated radioactive decay x0, . . . , x14 within unit intervals
[t, t + 1[, t = 0, 1, 2, . . .: 5 9 5 5 2 1 4 0 0 2 0 0 0 0 1
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Naive approach:

logEXt ≈ log 1 + logA+ at = logA+ at, t = 0, 1, 2,

hence fit linear regression to (t, log xt).

Problems:

◮ log transformation of zero counts ?

◮ variance heterogeneity

◮ E logXt < logEXt ⇒ exp(E logXt) < EXt .

Right approach: Poisson regression with log link.
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Implementation in R

> radiofit=glm(x~offset(log(deltat))+times,family=poisson(log))

> summary(radiofit) #offset to take into account lengths of time

... #which may in general differ from 1

Min 1Q Median 3Q Max

-1.5955 -1.0093 -0.7251 0.8709 1.5391

...

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.08130 0.23835 8.732 < 2e-16 ***

times -0.26287 0.05464 -4.811 1.5e-06 ***

...

Residual deviance: 17.092 on 13 degrees of freedom

> radiols=lm(log(x+0.001)~offset(log(deltat))+times)

> summary(radiols)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.1969 1.5489 1.418 0.17961

times -0.6152 0.1883 -3.267 0.00612 **

True logA and a are 2.08 and −0.3.
16 / 23



Data and fitted values

plot(times,x)

lines(times,fitted(radiofit))

lines(times,exp(fitted(radiols)),lty=2)

legend(locator(1),lty=c(1,2),legend=c("Poisson regression","least
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Note problems with least squares fit !
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Model assessment for logistic and Poisson regression

◮ consider residual deviance or Pearsons statistic

X 2 =
n∑

i=1

(yi − µ̂i)
2

V (µ̂i)

where V (µ) is variance of observation with mean µ.

◮ plot deviance or Pearson residuals against predicted values
and covariates

1. Pearson:

rPi =
yi − µ̂i√
V (µ̂i )

2. deviance: residual deviance is
∑

i(r
D
i )2 where rDi is

contribution from ith observation.

NB: deviance and Pearson residuals not normal - can make
interpretation difficult.
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Residuals for o-rings

devres=residuals(out)

plot(devres~temp,xlab="temperature",ylab="residuals",ylim=c(-1.25

pearson=residuals(out,type="pearson")

points(pearson~temp,pch=2)
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Residuals for radioactive decay

plot(residuals(radiofit),ylim=c(-1.6,1.8))

points(residuals(radiofit,type="pearson"),pch=2)
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Much spurious structure due to
discreteness of data.
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Overdispersion

Suppose residual deviance or Pearsons X 2 is large relative to
degrees of freedom.

This may either be due to systematic defiency of model
(misspecified mean structure) or overdispersion, i.e. variance of
observations larger than model predicts.

Overdispersion may be due e.g. to unobserved explanatory
variables like e.g. genetic variation between subjects, variation
between batches in laboratory experiments, or variation in
environment in agricultural trials.

There are various ways to handle overdispersion - we will focus on
a model based approach: generalized linear mixed models.
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Exercises

◮ Consider the wheezing data (available as data set ohio in the
faraway package). Fit a logistic regression model with age
and smoke as factors. Check the significance of the different
effects using likelihood ratio test and omit nonsignificant
effects. Compare with a model with age as a covariate (i.e. a
single slope parameter for age). Compare the fit of this model
with the previous model using a likelihood ratio test. Take a
look at deviance and Pearson residual plots. Can you use the
residual deviance for goodness-of-fit testing ?

◮ The wheezing data may be aggregated according to the
groups given by age and smoke (the aggregated data set is
available at the web-page). Repeat the preceeding exercise
but now with the aggregated data.
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More exercises

◮ (Exercise from Faraway) The ships dataset found in the
MASS package gives the number of damage incidents and
aggregate months of service for different types of ships broken
down by year of construction and period of operation.
Develop a model for the rate of incidents, describing the
effects of important predictors.

Optional exercises:

◮ show that the mean and variance of a binomial variable
Y ∼ b(n, p) are np and np(1− p), respectively.

◮ What is the formula for the residual deviance in case of a
Poisson regression ?

◮ Show that the probit model for binary data may be viewed as
a latent variable model where Y = 1[U < a + bx ] for a latent
standard normal variable U. The latent variable could e.g.
correspond to susceptibility to an insecticide if Y represents
dead/alive for an insect subjected to an insecticide dose x .
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