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SUMMARY 

Restricted maximum likelihood (REML) is now well established as a method for estimating the 
parameters of the general Gaussian linear model with a structured covariance matrix, in particular 
for mixed linear models. Conventionally, estimates of precision and inference for fixed effects are 
based on their asymptotic distribution, which is known to be inadequate for some small-sample 
problems. In this paper, we present a scaled Wald statistic, together with an F approximation 
to its sampling distribution, that is shown to perform well in a range of small sample settings. 
The statistic uses an adjusted estimator of the covariance matrix that has reduced small sample 
bias. This approach has the advantage that it reproduces both the statistics and F distributions in 
those settings where the latter is exact, namely for Hotelling T2 type statistics and for analysis of 
variance F-ratios. The performance of the modified statistics is assessed through simulation studies 
of four different REML analyses and the methods are illustrated using three examples. 

1. Introduction 
Consider the general Gaussian linear model for the n observations Y(n x 1), 

y N(XO3; Z), 

where X (n x p, rank p) is a matrix of known covariates, g3 (p x 1) is a vector of unknown parameters 
and Z is an unknown (n x n) variance-covariance matrix. We are principally concerned in this paper 
with situations in which the data consist of a collection of independent sets, that is, for which Z is 
block-diagonal. Situations where such a model may be appropriate include nested (or hierarchical), 
blocked, crossover, and repeated measurements experiments, and Z is assumed to be structured 
accordingly, for example, to reflect the time series nature of repeated measurements. The methods 
are not restricted to this setting, however, and might be considered for other covariance structures 
such as those arising from spatial models. In applications of the Gaussian linear model, either or 
both of /3 and Z may be of central interest. Here we assume that /3 is the focus of attention and 
Z is a nuisance to be accommodated in the analysis. 

Restricted (or residual) maximum likelihood (REML) has become well established for the esti- 
mation of the parameters of Z (Patterson and Thompson, 1971; Harville, 1977; Thompson, 1980; 
Robinson, 1991) and the corresponding estimator of 3, 3 say, has a generalized least squares form 
that uses the REML estimate of Z. Conventionally, the precision of /3 is obtained from an estimate 
of the variance-covariance matrix of its asymptotic distribution. However, this takes no account 
of the variability in the estimate of Z, which, for certain combinations of covariance structure, 

Key words: Alpha design; Ante-dependence; Crossover trial; Mixed models; Residual maximum 
likelihood; Small sample approximation. 
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design, and sample size, can have a significant impact on the precision of /3. In such situations, 
the conventional asymptotic-based measure of precision can seriously overestimate the true pre- 
cision. Further, Wald-type test procedures and corresponding confidence intervals that are based 
on asymptotic chi-squared approximations also ignore the variability in the estimate of Z. Our 
purpose in this paper is to provide more appropriate procedures for small sample inference based 
on Wald type statistics. 

The construction of Wald-type pivots will be approached through an adjusted estimator of the 
covariance matrix of the fixed effects. Before pursuing this, we note that it can be argued that, in 
considering the behavior of pivotal quantities for the purposes of small sample inference, the bias 
in the estimated covariance matrix of the fixed effects is not of direct relevance. The covariance 
matrix can be regarded merely as a component of the required pivots rather than as a quantity of 
intrinsic interest. It follows that the problem of small sample inference could be approached more 
directly by exploring the small sample distribution of Wald statistics calculated using the estimated 
asymptotic covariance matrix of /3. However, we shall first consider the bias in the estimate of the 
covariance matrix. There are two reasons for taking this initial step. First, the approximation to 
the small sample distribution of the Wald statistic is simpler when the adjusted covariance matrix 
is used. Second, if measures of precision are to be presented, then the adjusted ones are preferable 
in terms of behaviour and, in addition, if such estimates are used, we are able to maintain the 
familiar relationship between these and the Wald statistics. 

The problem of approximating the small sample precision of /3 and related distributional issues 
has been thoroughly explored in a number of papers by Harville and coworkers (Kackar and Harville, 
1984; Harville, 1985; Jeske and Harville, 1988; Hulting and Harville, 1991; Harville and Jeske, 1992; 
Harville and Carriquiry, 1992). In the following section, we combine results from these papers to 
provide an adjusted estimator of the covariance matrix of /3. In Section 3, a Wald statistic is 
constructed for linear combinations of fixed effects using this estimator. The statistic is scaled 
using a quantity calculated from the data, and its small sample distribution is approximated by an 
F distribution. This leads to a general procedure that reproduces exact distributional results when 
these exist, such as for Hotelling's T2 and analysis of variance F-ratios, and allows consistency 
among distributional approximations for higher-dimensional Wald tests and component t-tests. 

Attempts to examine the behaviour of small sample procedures in REML have been confined in 
the past to rather simple settings, such as one- and two-way random effects models and balanced 
incomplete block designs (see, e.g., Kackar and Harville, 1984; McLean and Sanders, 1988). To 
assess the behavior of the proposed methods, we use situations that are rather more varied in their 
type and complexity and therefore, we hope, reflect a wider range of practical problems. In Section 
4, simulation results from four settings are considered: a two-period crossover trial, a random effects 
model for an incomplete row and column design, a random coefficient regression model, and an 
ante-dependence analysis for repeated measurements. In Section 5, the approximations are applied 
in three examples: a small crossover study on the treatment of intermittent claudication, a nested 
experiment used to investigate the nitrogen fixing ability of rhizobia bacteria, and a repeated 
measurements experiment on the effect of added nitrogen on the concentration of a soil element. 

2. Variance-Covariance Matrix of the REML Fixed Effects 
Recall from Section 1 that we have n observations Y following a multivariate Gaussian distribution, 

y N(XO3; s )- 

The elements of the variance-covariance matrix Z are assumed to be functions of r parameters, 
of (r x 1), that are sufficiently well behaved for the resulting likelihood to be regular in the sense 
of Cox and Hinkley (1974, p. 281). In particular, we assume that the first two partial derivatives 
with respect to the elements of of exist. To simplify notation, we show explicit dependence of Z on 
of only when we wish to emphasise it. 

The REML estimator of a, which we denote a, is the maximum likelihood estimator from the 
marginal likelihood of the variables Z = KY, where K is any (n - p) x n matrix of full rank 
satisfying KX = 0. The marginal likelihood of Z does not depend on the particular choice of K 
and can be expressed in terms of Y and X only as 

2 log L(a) = constant - log{~LE }- log{IXTZIXi} 

-y {E _z X( ZxxslX)-lXTZ-l}Y 

The REML estimator of /3 is the generalized least squares estimator 

/T= (6fXT z< )-yY 
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for 
,p(cT) T 1XT ,)1 1- 0 a)={X (ao) X}~ 

Kackar and Harville (1984) show that /3 is unbiased for 83. 
The matrix P is the variance-covariance matrix of the asymptotic limiting distribution of /3 as 

n -* oo and conventionally the estimator of 4P, = (a ),is used to provide a mneasure of precision 
for /3. It is possible to identify two main sources of bias in P when it is used as an estimator of 
V[L3] in small samples. First, P(a) takes no account of the impact on V[/3] of the variability in ff 
and so is not equal to V[,/3]. Second, P is a biased estimator of 0P(c). 

We consider first a better approximation than P to the small sample variance-covariance matrix 
of /3. As in shown in Kackar and Harville (1984), the variability in /3 can be partitioned into two 
components, 

V[/3] =,P +A, 

where the component A represents the amount to which the asymptotic variance-covariance matrix 
underestimates (in a matrix sense) V[]31. Using an argument based on a Taylor series expansion 
around a, Kackar and Harville show that A can be approximated by 

r r 
A r-i Wij(Qij-Pi4PPj)}d1I (1) 

i=1 j=_ 

where 
T 2-1 TaZ a- 

Pi =X Ta X and Qij =X X 
2 - ac-i aO- 

and Wij is the (i, j)th element of W = V[+1]. 
We now consider the bias in 4P as an estimator of P. Using a Taylor series expansion about a, 

we have 

ac-i 2ojc- 4ir,. 4v + 1: (&i - gi) + 2 (&i - gi) (&j - fj) 

from which we get, ignoring possible bias in a, 

E[f1 4 P + - W,j . (2) 
= j=1 

In terms of the previously defined quantities, this can be written as 

ac2a- = (Pi4iPj + PjPPi - Qij - Qji + Rij), 

where 

Rij = X T z -1 
.a2 ac -IX 

An adjusted estimator of the small sample variance-covariance matrix of /3 can then be obtained 
by combining (1) and (2), 

iA = i + 2, E Wij (Qij - PiPj - 4Rij) } , (3) 
i=1 j=1 

where Z (a) is substituted for I in the quantities within the summation on the righthand side. 
An important class of covariance structures is defined by the linear form 

Z Z c-iG2, 

i=l1 

with the {Gi} known (ni x ni) matrices. This class includes structures arising from mixed models. 
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For such linear covariance structures, 

02z 

for all pairs (i, j) and this implies that Rij = 0. Expression (3) then simplifies to 

iA = w-7 Wiiaiaci(4) 
i=1 j=1 

= + 2A (5) 

for A as represented in (1). This factor of two in the bias correction under a linear structure has 
been noted on a number of occasions (see, e.g., Harville and Jeske, 1992, Section 4.1). 

An approximation to the variance-covariance matrix of a, W, can be obtained from the inverse 
of the expected information matrix IE, where 

2{IE}ij tr ( z az - tr(24Qij -PiPj) 

Alternatively, the expected information matrix can be replaced by the observed or average infor- 
mation matrices. For details, see Gilmour, Thompson, and Cullis (1995). 

3. Inference and Degrees of Freedom 
Suppose that inferences are to be made simultaneously about the f linear combinations of the 
elements of /3: L,8, for L an (f x p) fixed matrix. It is proposed that the adjusted estimator of the 
covariance matrix be used in Wald-type pivots of the form 

F -.(/3-/3)TL(LT PAL) 1LT(/3 -3). (6) 

The derivation of an appropriate F approximation for (6) when f = 1 is comparatively straightfor- 
ward and essentially recovers Satterthwaite's (1941) approximation. For f > 1, the situation is more 
complicated in that it is necessary to take into account the internal random structure of LTPL, 
and this may be very different in different settings. Moreover, for the special case of Hotelling's T2 
type statistics (Krzanowski, 1988, Section 8.3), it is known that it is a scaled form of F, F* say, 
where 

m 
F ~~F F*-f 

m F 

that has an exact Fer, distribution. This and some simple studies in which F distributions have 
been fitted to simulated statistics of the form of F in (6) suggest that, if an F approximation with 
numerator degrees of freedom equal to f is to be used, then a scaled form F* = AF will be required, 
where typically A < 1. Furthermore, if, as we would like, the chosen approximation is to reproduce 
the correct F degrees of freedom when the distribution is exact, then such a scale factor will have to 
be introduced to accommodate Hotelling's T2 type statistics as well as the more familiar analysis 
of variance F-ratios. 

We derive such an approximation as follows. We need to calculate two quantities from the data, 
the scale factor A and the denominator degrees of freedom m. 

First, using a Taylor series expansion for {LT AL}-, we have 

{LT 'AL}- {LTPAL}-' + (-i _ gi) 
O L 4AL 

2=1 j= i 

Ignoring possible bias in a and possible statistical dependence between /3 and ?l and using the 
relationships 

and 
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we can write, approximately, after taking appropriate expectations and eliminating higher-order 
terms in the Taylor series expansion, 

E[F] 1+(A2) 

and 

V[F] (1+ B), 

where 

B = j(Al + 6A2) 

and 
r r 

A1 Wijtr(ePPiP)tr(ePPjP), 
i=l j=l 

r r 

A2 - E Wijtr(&-PPi4P& 4PjiP) 
i=l j=l 

for 

e = L(LTPL)YlLT. 

To the order of the Taylor series approximation, by matching moments of F* with those of the 
approximating F distribution, we get 

m _ 4 + , where p- 2E [F]2 (7) 
fp- 1) EF2 

and 

E[F](m-2) (8) 

These quantities can be estimated by substituting ff for a, and an estimate of W can be obtained 
as in Section 2. 

These estimates of m and A in (7) and (8) will match the known values from those special cases 
in which the F approximation is exact up to the order of the Taylor series approximation. To obtain 
estimates that are exact in these special cases, we modify the estimates of m and A in such a way 
that we leave unchanged the approximation up to the order of the Taylor series expansion; that is, 
we add selected terms of higher degree. Omitting details of the derivation of these terms, we arrive 
at the following modified estimates of m and A. Essentially, we just modify the approximation of 
the expectation and variance of F to produce E* and V*, i.e., 

E* {1 -A2/fJ 

e { (l-c2B)2(1 - c3B) 

where 

9 
C fl+2(1-g) 

l-g9 
C2 3= +2(1- 

If + 21 - g) 
3 3 +2(1-g) 

for 

(t? 1 )A - (t +4)A2 
9(f +2)A2 

The two quantities E* and V* replace E[F] and VEFI in (7) and (8) to produce the modified 
estimates of m and A. 
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It can be checked that these match the previous values to the order of the Taylor series expansion 
and also that they reproduce the correct values when AF has an exact F distribution. 

For the special case f = 1, A is exactly equal to one and, after taking the square root, the 
estimate of m turns out to be a simple modification of Satterthwaites (1941) degree of freedom 
estimator for the t-test. Giesbrecht and Burns (1985) apply this method in the current setting for t 
statistics with a mixed model covariance structure. The advantage of the approximation developed 
here is that it is consistent across all values of ?. For example, ignoring the scale factor when f > 1 
can lead to values of m that are considerably smaller than Satterthwaite's approximation for any 
one-dimensional component a- TL(A -,p3), where a is a fixed (f x 1) vector. 

4. Simulation Results 
To explore the behavior of the statistics developed in the previous two sections, we have conducted 
simulation studies for four different settings. We present the results from these in turn. Comparisons 
are made with unadjusted tests; that is, with tests that use the asymptotic X.2 approximation to 
the distribution of 

- )3L(LTTL -1LT(3-3) 

or, when f = 1, the standard normal approximation to its square root. 

4.1 A Four-Treatment Two-Period Crossover Trial 
In a crossover trial, each unit receives a sequence of treatments and, to avoid confounding treatment 
and period (or time) effects, such trials use several different sequences (see, e.g., Jones and Kenward, 
1989). Conventionally, data from crossover trials are analyzed using within-unit information only; 
that is, with fixed unit effects. It has been suggested, however, that for those designs in which 
there is information on treatment effect in the between-unit stratum, this information should be 
recovered through the use of random unit effects (Chi, 1991). Many crossover trials as used in 
practice have few units, and it is with such examples that we might expect the small sample effects 
considered in this paper to be particularly apparent. 

We choose for the simulation study a 12-sequence design with 4 treatments. The sequences 
consist of all pairs of treatments in all orders and one unit is assumed to be randomized to each 
sequence, making a total of 12 units. The fixed-effects component of the model incorporates the 
period difference and three treatment effects. The random component of the model, and generated 
data, consists of between-unit and within-unit variance components, with their ratio denoted by p. 
Five settings for p have been used: 0.25, 0.5, 1, 2, and 4. 

For each setting of p, 10,000 sets of data have been simulated from the corresponding multivariate 
Gaussian distribution, with zero treatment effects, and for each set the REML estimates of variance 
components and fixed effects have been calculated. A Fisher scoring algorithm was used employing 
the average information matrix as specified in Gilmour, Thompson, and Cullis (1996). If this failed 
to converge for any particular set of data, a more time-consuming simplex search was used. The 
between-subject variance component was not constrained to be positive. The variance adjustments 
and degrees of freedom were calculated using all three forms of information: expected, observed, 
and averaged. There was very little difference between these and so only results from the expected 
information are presented. 

In Table 1, we present the percentage relative bias in the estimates of variance of the fixed effects. 
This is defined for the fixed effect ?T 3 as 

100 (ES [ T4A ] 1 

where the subscript S indicates moments taken over the simulated sets of data. The bias of the 
unadjusted estimator is very large and negative, as expected. This bias is reduced to an acceptable 
level by the adjustment, although not totally eliminated for relatively small between-subject 
variability. The bias in all the estimators decreases with increasing between-subject variability. 

The observed size of nominal 5% t- and F-tests are also presented in Table 1 together with the 
average over the simulations of the estimated effective degrees of freedom. The t test is for a single 
treatment comparison, the particular choice is immaterial given the balance in the design. The F- 
test is for an overall treatment difference on 3 degrees of freedom and, because the design is balanced 
with respect to treatment, the scale factor associated with this statistic is equal to one irrespective 
of the estimated variance components, and so is not presented in the tables. The behaviour of 
the unadjusted tests is unacceptably poor, noting that with 10,000 simulations the standard devi- 
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Table 1 
Two-period crossover trial: percentage relative bias in the variance estimates, estimated effective 
degrees of freedom, and actual size of nominal 5% Wald t- and F-tests from the simulation study 

% Relative bias, Observed size Observed size 
variance estimates Mean effective Wald t-tests Wald F-tests 

p Asy. Adj. d.f. Asy. Adj. Asy. Adj. 

0.25 -18 -2 13.9 9.8 5.5 13.5 5.7 
0.5 -16 -2 12.8 9.7 5.5 13.6 5.7 
1.0 -12 0 11.4 9.4 5.4 13.2 5.4 
2.0 -8 0 10.1 8.9 5.2 12.4 5.3 
4.0 -5 1 9.1 8.7 5.2 12.2 5.1 

ation of the observed size is approximately 0.2%, but the combination of adjusted estimate of 
precision and estimated degrees of freedom produces the required significance level. Note that the 
estimated degrees of freedom decrease with increasing between-subject variance. This reflects the 
decreasing contribution of the between-subject information to the estimate of the fixed effects and 
their covariance matrix. 

4.2 A Row-Column a-Design 
We next consider an incomplete block design with two blocking factors using random row and 
column effects. We use a row-column ca-design as defined by John and Eccleston (1986), generated 
using the algorithm of Nguyen and Williams (1993). The design has 3 replicates of 12 treatments 
(labelled 1-12) in 3 x 4 arrays: 

replicate 
1 2 3 

10 4 8 1 12 4 2 6 12 7 4 10 
11 5 2 7 9 11 7 10 11 8 6 1 
3 9 12 6 1 8 3 5 5 9 3 2 

Row and column effects are assumed to be independent across replicates and there is assumed 
to be no replicate effect. In the simulations, the variances of the row and column effects have been 
set equal (to 42, say) and we denote by p the ratio of a4 to the residual mean square. A range 
of values of p from 0.25 to 4 has been used. The fixed effects (treatment) part of the model was 
parameterized in terms of the 11 differences from treatment 1. 

For each setting of p, 5000 sets of data were simulated from the corresponding multivariate 
Gaussian distribution with zero treatment effects. The same numerical methods were used as for 
the crossover simulation above and the between-row and between-column variance components 
were not constrained to be positive. The relative percentage bias in the variance estimates are 
presented in Table 2 and the observed test sizes in Table 3. These are presented for adjustments 
calculated using all three types of information matrix. For the single contrast statistics (variance 
bias, degrees of freedom, and t-test size), the minimum, maximum (in absolute size), and mean of 
the 11 treatment differences are given. The design is not balanced and so we expect some variation 
in the behavior of these statistics. 

The pattern of bias in the estimates of precision of the fixed effects is similar to the 
previous example. The relative bias of the unadjusted estimator ranges between 7 and 32% 
and is unacceptably large. This bias decreases as the ratio of between-block to within-block 
variability increases. The adjusted estimators remove much of this bias, with the expected and 
adjusted information-based estimators performing somehat better that that based on the observed 
information matrix. The latter tends to overcorrect for the bias, producing slightly conservative 
estimates. 

The actual sizes of nominal 5% Wald tests for each treatment difference are summarized in Table 
3 (with an approximate standard deviation of 0.3%) for the same range of settings as in Table 2. 
The observed size of nominal 5% tests for overall treatment effect (on 11 degrees of freedom), the 
average calculated scale factor, and the average estimated denomninator degrees of freedom were as 
follows: 
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p 0.25 0.5 1 2 4 

Size, asymptotic test 35.7 32.8 27.9 26.9 21.7 
Size, adjusted test 4.9 5.3 5.3 5.4 5.1 
Scale factor 0.93 0.96 0.99 1.00 1.00 
Denominator d.f. 11.4 11.3 10.5 9.4 8.3 

As with the crossover design above, there was little to choose between the results from the three 
types of information, and so the results from the expected information only are presented. An 
approximate 95% probability interval for the observed size based on an actual 5% level is ?0.6 
percentage points. The sizes of the adjusted tests are quite acceptable, in this example correcting 
the grossly inflated sizes of the asymptotic tests. Again, the behavior of the degrees of freedom 
and in addition the scale factor, with increasing between-row and between-column variability, is as 
expected. The limiting case is provided by an analysis with fixed row and column effects from which 
the value of the denominator degrees of freedom and scale factor are equal to 5 and 1, respectively. 

4.3 A Random Coefficient Regression Model 
For the third simulation study, we consider a simple random coefficient regression model as used 
in the analysis of longitudinal data (see, e.g., Laird and Ware, 1982). We assume that the repeated 
measurements from each of n units can be represented by a simple linear regression over time with 
parameters varying among units. Suppose that the ith unit is observed at qi times t1, .... tiqi, with 
associated observations Yi = (Yil .... Yiqi)T. A simple linear regression relationship is used for the 
first stage of the random coefficient model, i.e., 

Y I bi - N(Xibi; a 2Iqi)2 

where bi = (bio, bi1)T, the intercept and slope parameter for this unit, and the jth row of Xi is 
equal to (1, ti3). The regression parameters are then assumed to follow a multivariate Gaussian 
distribution bi N(,3, Q) with Q unstructured, so that marginally 

Yi - N(XiO;a2 XiX + Q), 

for 03=(0, )T. 
If the repeated measurements were balanced, that is if all units were observed on the same 

occasions, the GLS estimate of 3 would be independent of au2 and Q. In such a situation, the 
adjustment term in MA vanishes. We therefore choose for the simulations an extremely unbalanced 
set. It is assumed that there is a notional set of 9 equally spaced times of measurement: 0, 1,... , 8, 

Table 2 
Row and column a-design: percentage relative bias in the variance estimates. Minimum 

and maximum refer to absolute size over all pairwise treatment differences. 

Adjusted 

p Asymptotic Expected Observed Average 

0.25 Minimum -24 -3 9 1 
Mean -31 -6 .4 -4 
Maximum -34 -9 -3 -8 

0.5 Minimum -24 -3 3 -2 
Mean -32 -8 0 -7 
Maximum -35 -10 -3 -9 

1 Minimum -15 0 4 0 
Mean -24 -5 -1 -5 
Maximum -27 -8 -3 -7 

2 Minimum -15 -3 9 -2 
Mean -21 -6 3 -5 
Maximum -24 -8 -2 -7 

4 Minimum -7 2 2 2 
Mean -10 0 1 0 
Maximum -12 -2 -2 -2 
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Table 3 
Row and column a-design: actual size of nominal 5% Wald tests. The minimum, 

maximum, and mean refer to t-tests for all pairwise treatment differences. 

Adjusted 

p Asymptotic Expected Observed Average 

0.25 Maximum 14.3 6.3 5.8 6.2 
Mean 12.9 5.7 5.4 5.7 
Minimum 11.8 5.1 5.0 5.0 

0.5 Maximum 13.8 5.8 4.8 6.2 
Mean 12.3 5.8 5.9 5.7 
Minimum 11.4 5.2 5.4 5.1 

1 Maximum 11.8 6.1 6.1 6.1 
Mean 11.3 5.7 5.7 5.9 
Minimum 10.3 5.0 5.0 6.5 

2 Maximum 11.9 6.5 6.3 6.5 
Mean 11.1 6.0 5.8 5.9 
Minimum 10.4 5.7 5.3 5.6 

4 Maximum 10.3 5.6 5.6 5.7 
Mean 9.8 5.4 5.3 5.4 
Minimum 9.4 5.0 5.0 5.0 

with 24 subjects split into 3 groups of 8, the members of each group being observed on the same 
3 occasions. The' three sets of occasions are chosen to be nonoverlapping: (0, 1, 2), (3,4, 5), and 
(6,7,8). 

For Q, we define 

-2 F 1.00 -0.53 
L -0.53 1.00 J 

with p taking the values 1.0 and 0.5 in the simulations, and the residual variance was set equal to 
0.25. Each simulation run consisted of 20,000 samples. An accelerated EM algorithm (Dempster, 
Laird, and Rubin, 1977) was used to fit the covariance model, and this was replaced by a, simplex 
search whein convergence was particularly slow. The estimate of Q was constrained to be positive 
definite. 

The results from the simulations are summarized in Table 4. As before, we present the percentage 
relative bias of the unadjusted and adjusted variance estimates and the size of nominal 5% Wald 
tests for the two parameters. No overall F-test was calculated; it was thought to have little meaning 
in this setting. We also present the mean over all the simulations of the estimated degrees of freedom 
from each adjusted t-test. It can be seen that the expected negative bias in the unadjusted estimate 
of variance is present, but is not large for the slope parameter Q1. The adjustment does succeed in 
removing most of the bias. The high (10%) unadjusted test sizes can be attributed to the infinite 
degrees of freedom implicit in the chi-squared approximation. The adjusted test sizes are perfectly 
acceptable given an approximate standard deviation of 0.2% for the observed sizes. It is interesting 
that the mean of the estimated effective degrees of freedom is notably smaller for the intercept than 
for the slope, the degree of freedom for the latter approach the residual degrees of freedom among 
subjects. If the data were balanced, these tests would have exact t-distributions with 23 degrees of 
freedom. 

4.4 Ante-Dependence Analysis for Repeated Measurements 
The preceding simulation studies have been based on linear covariance structures. Our final study 
uses a nonlinear structure. We would like an example in which we expect the estimation of the 
covariance structure to have a nonnegligible impact on the precision of the fixed effects estimates. 
The ante-dependence (AD) structure for repeated measurements (Gabriel, 1962; Kenward, 1987) is 
a potential candidate for this in that the number of parameters is of the same order as the number 
of times of measurement. For a definition of the AD structure, see Gabriel (1962); it can be derived 
in several ways, for example using conditional independence arguments. In the simulations, a first- 
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Table 4 
Random-coefficient regression model: percentage relative bias in the variance estimates, mean 

effective degrees of freedom, and actual size of nominal 5% Wald tests from the simulation study 

Percentage bias in 
variance estimates Mean effective Observed test size 

Parameter p Asymptotic Adjusted d.f. Asymptotic Adjusted 

do 0.5 -13 -1 13.7 9.1 5.0 
1.0 -12 -3 15.6 9.3 5.8 

Qi 0.5 -2 1 22.6 6.4 4.7 
1.0 -5 -3 22.8 6.9 5.3 

order AD structure is used. This is equivalent to assuming that the inverse of the variance- 
covariance matrix is symmetric, positive definite, and tridiagonal, implying a Markov structure 
among the repeated measurements. No other constraints, such as stationarity, are imposed and the 
matrix is therefore defined by 2T - 1 parameters given T times of measurement. The chosen matrix 
has the following variance-correlation form: 

1.00 
0.54 2.81 
0.33 0.61 4.80 
0.20 0.37 0.61 6.35 
0.12 0.22 0.35 0.58 6.79 
0.06 0.11 0.18 0.29 0.50 6.70 

For the mean structure, we take the simple situation in which there are 2 groups of 10 units, each 
unit being measured notionally on the same T = 6 occasions. A number of values have been assumed 
to be missing through dropout (a monotone data structure) with the numbers of observations per 
unit as follows: 

Group Number of observations per unit 

1 6 6 6 6 5 4 4 4 3 3 
2 6 6 6 6 4 4 3 3 3 2 

We fit a model including time and group main effects and time-by-group interaction. As well as 
estimating the effects in the model, we test the overall time-by-group interaction on five degrees 
of freedom. The time effects have been parameterized in terms of orthogonal polynomials. The 
simulation run consisted of 20,000 samples. An EM algorithm was used to fit the model and there 
were no convergence failures. The adjustments use the expected information matrix. 

The results from the simulation study are summarized in Table 5. The bias among the unadjusted 
variance estimates fluctuates considerably among the different contrasts, but typically lies between 
-5 and -10%. The adjustment effectively removes this small bias. As with the bias, the mean 
effective degrees of freedom vary among the different polynomial contrasts, reflecting the differing 
relationships of the contrasts with the covariance structure as modified by the dropout pattern. 
Note that the degrees of freedom nowhere exceed 18, the maximum residual degrees of freedom at 
any one time of measurement. The unadjusted t-tests have an observed size that is too large, given 
an approximate standard deviation of 0.2% for these figures. Again, this is corrected effectively 
using the adjustment. 

The unadjusted F-test for the treatment-by-time interaction on 5 degrees of freedom produced an 
observed size of 19.6%, while the adjusted test has an observed size of 5.8% with estimated effective 
degrees of freedom of 14.1, in the middle of the range of the degrees of freedom for the component 
t-tests. The scale factor had a mean value of 0.8, with a very small variance over the simulations 
(<0.001). The comparatively small size of the scale .factor reflects the number of parameters in 
the covariance structure. Note that, if the Wald statistic were not scaled, the estimated effective 
degrees of freedom would have had a mean of 6.6, a much smaller figure than that obtained above 
and bearing little relation to the degrees of freedom of the component t-tests. 
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Table 5 
Ante-dependence analysis: percentage relative bias in the variance estimates, mean effective 

degrees of freedom, and actual size of nominal 5 % Wald tests from the simulation study 

% Relative bias in Observed test size 
variance estimates Mean effective (nominal 5%) 

Parameter Asymptotic Adjusted d.f. Asymptotic Adjusted 

constant -5 -1 14.8 7.7 5.2 

lin -8 -1 10.3 9.0 5.4 
qua -5 -1 16.1 7.5 5.1 
cub -6 0 14.0 7.9 5.1 
4th -9 -1 13.7 8.3 5.1 
5th -5 1 17.5 7.4 5.2 

group -4 0 14.9 7.5 5.0 

gxlin -9 -1 10.7 8.9 5.4 
gxqua -5 0 16.0 7.7 5.1 
gxcub -6 0 14.5 7.8 5.0 
gx4th -10 -2 14.0 8.5 5.3 
gx5th -5 1 17.7 7.3 5.1 

5. Examples 
5.1 A Four-Period Crossover Trial 
Jones and Kenward (1989, p. 232) describe a crossover trial with the aim of comparing the effects 
of three active treatments (A, B, and C) and a placebo on subjects with intermittent claudication. 
A four-period design was used in which a different ordering of the four treatments was used for each 
subject. The design and data from one response measurement, the left ventricular ejection time 
(in milliseconds), are given in Table 5.23 of Jones and Kenward (1989). The covariance structure 
of these data is far from uniform and previous analyses (e.g., Jones and Kenward, 1989, Section 
7.6) have explored the use of other patterned and unstructured covariance matrices for these data. 
As an illustration of the small sample bias that arises from variability in the estimated covariance 
parameters, we show the results from fitting an unstructured covariance matrix. A linear model 
is used with period and direct treatment effects and the small sample adjustments have been 
calculated using the expected information matrix. The treatment effects, presented as differences 
from placebo, were estimated as follows, together with asymptotic and adjusted standard errors 
and corresponding estimated degrees of freedom: 

SE 

Effect Estimate Asymptotic Adjusted d.f. 

A-P -52.0 12.0 15.8 24.7 
B-P -48.7 12.2 16.1 26.3 
C-P -66.1 12.1 15.9 25.4 

As a comparison with the simulation results, the percentage relative bias in the variance estimates 
for the three treatment effects is -42%. A summary of two Wald tests are presented below: the 
unadjusted and adjusted statistics for testing overall treatment differences adjusted for period 
effects and for periods adjusted for treatments. 

Periods Treatments 

Numerator d.f. 3 3 
Scale factor 0.83 0.99 
Effective denominator d.f. 9.8 24.7 
Scaled Wald statistic 4.82 6.43 
Asymptotic X3 probability 0.0006 0.0002 
F probability, scaled statistic 0.025 0.002 
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The probabilities from the asymptotic tests are far too small and imply rather different 
conclusions about the statistical significance of the treatment and period effects. Note, in addition, 
the difference in the scale factor and denominator degrees of freedom for the two tests. These 
quantities reflect to a great extent the interplay between the covariance structure and the effects 
being tested. The scale factor for the treatment test is close to one, implying that the covariance 
structure of these estimated effects is, up to a constant multiplier, almost fixed. This is a 
consequence of the approximate balance of the treatments with respect to periods. In contrast, 
the scale factor for the period test is well below one and the denominator degrees of freedom 
are much smaller than for the treatment test. Here the levels of the factor coincide exactly with 
the variables defining the covariance structure and so the test is approximately of the form of a 
Hotelling's T2. In the absence of treatment effects, this would be an exact Hotelling's T2 and the 
scale factor and degrees of freedom would then be equal to 0.85 and 11, close to the observed values. 

5.2 Nodule Isolation Effectiveness Trial 

This example is from an experiment testing the intrinsic nitrogen-fixing ability of rhizobia bacteria 
from sludge-treated soils. Nitrogen fixation was measured by dry-weight yields of white clover 
plants that had been inoculated with the bacteria. The soil for the trial was removed from a sludge 
incorporation field and used in the experiment at three rates: low, medium, and high. Lime was 
used as a second treatment factor: absent and present. The trial soil was placed into pots in a 
greenhouse, with 12 pots per treatment, and sown with either white clover or rye grass. After 
approximately 2 months growth, the plant matter was removed from 6 pots and 50 white clover 
nodules (isolates) were extracted for each treatment. Each isolate was used to inoculate six white 
clover seeds, which were then placed in pairs into plant agar test tubes. Hence, for each treatment, 
there were 50 isolates and for each isolate there were 3 tubes. A further 150 tubes were prepared 
in the same way, as a control, using a commercial white clover inoculant, TAl. The test tubes 
were arranged in a glass house in 3 positional groups or blocks, each of 350 tubes, 50 from each 
of the 7 treatments. Note that the groups do not represent genuine replicates, as the same isolates 
contribute to each group. 

We base the analysis on the dry matter yields from each tube, of which 115 are missing, 
producing an unbalanced structure. One feature of the measurements is the large component of 
variability among isolates from the sludge, which is not present among the isolates of the commercial 
inoculant. It is therefore necessary to incorporate a variance component in the analysis that applies 
to the treatment isolates only. For the analysis, a conventional mixed model is used with the 
seven treatments as fixed effects. In additional to the residual component, three other variance 
components are included: one for position, one for treatments within posi.tion, and one for the 
noncontrol isolates. These are estimated as follows: 

Component Estimate SE 

Residual 12.11 6.73 
Position 0.29 0.40 
Position/treatment 0.48 0.31 
Noncontrol isolates 6.36 0.95 

In this example the estimate of precision of the fixed effects should not be much influenced by the 
small sample adjustment because the design is not far from balance and the variance components 
play a very small role in the estimation of the fixed effects. However, the presence of random effects 
associated with some treatments but not others does have implications for the degrees of freedom, 
and it is interesting to see how these are estimated for the treatment meanis. These, together with 
their estimated asymptotic and unadjusted standard errors and degrees of freedom, are presented 
in Table 6. As expected, the sludge treatment means are more variable than the control mean, 
reflecting the presence of the additional variance component. Their associated degrees of freedom 
are correspondingly greater, reflecting the additional information in the extra variance component. 
The standard errors of treatment differences and their associated degrees of freedom (not presented) 
show the same pattern, the particular combination (whether sludge treatment versus control or 
sludge treatment versus sludge treatment) determining the precision and degrees of freedom. The 
small differences in precision and degrees of freedom among the sludge treatments reflect the small 
departures from balance in the design due to missing values. The difference in the unadjusted and 
adjusted standard errors are, in this example, negligible. 
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Table 6 
Nodule isolation effectiveness trial: estimated treatment means, 

standard errors, and effective degrees of freedom 

SE 

Treatment Estimate Asymptotic Adjusted d.f. 

(1) Sludge absent, lime absent 18.12 0.70 0.70 18.4 
(2) Sludge low, lime absent 14.72 0.69 0.69 18.2 
(3) Sludge high, lime absent 16.38 0.69 0.69 18.0 
(4) Sludge absent, lime present 15.37 0.69 0.69 17.3 
(5) Sludge low, lime present 15.02 0.72 0.72 21.1 
(6) Sludge high, lime present 15.21 0.71 0.71 20.0 
(7) Control 17.03 0.58 0.58 9.1 

5.3 Effect of Nitrogen on a Soil Element 
The third example is an illustration of the use of the adjustment with two nonlinear covariance 
structures, one with many and one with few parameters. The data are from a series of field 
experiments exploring the effect of applied nitrogen on the concentration of certain elements in 
the soil. Here we consider the data on one particular element from a single repeated measurements 
experiment. Four replicate plots received each of four added levels of nitrogen. Nine equally spaced 
sampling occasions were used, and many values were missing. Only 2 of the 16 plots had a complete 
set of 9 measurements and, in total, 32 of the 144 (22%) observations were missing. The missing 
values were scattered quite evenly over treatment groups and times, and the resulting data set is 
very unbalanced. 

There is little average plot-to-plot variation with these data, but the local correlation over time 
is quite high. A stationary first-order autoregressive (AR(1)) covariance structure (two parameters) 
provides a good fit. Preliminary analysis shows no appreciable interaction between nitrogen level 
and time of measurement, and so an additive fixed effects model has been used. Overall-Wald tests 
of effects associated with time and nitrogen level are presented. As a comparison, the same tests 
have been made using the first-order ante-dependence (AD(1)) structure (17 parameters). This 
generalizes the AR(1) structure and so necessarily provides as good a fit but, in this instance, is 
grossly over-parameterized. The details of the tests are as follows: 

AD(1) AR(1) 

Effect N Time N Time 

Numerator degrees of freedom 3 8 3 8 
Scale factor 1.00 0.79 1.00 0.99 
Denominator degrees of freedom 32.9 20.4 34.0 81.4 
Scaled Wald statistic 1.46 0.79 2.14 1.25 

In this case, none of the effects are statistically significant, whether the asymptotic or adjusted 
tests are used. Again, however, the influence of the covariance structure and design can be seen in 
the scale factors and degrees of freedom. Note for the time effect the large increase in denominator 
degrees of freedom associated with the more parsimonious covariance parameterization and the 
corresponding difference in scale factor. The treatment main effect statistics involve averages over 
time and depend less on the covariance parameters, hence their smaller dependence on the choice 
of structure and associated unit scale factors. 

6. Discussion 
The appearance of REML procedures in major statistical packages has meant that techniques 
such as weighted and generalized least squares and the recovery of between-block information are 
being applied in an increasingly wide range of settings, some involving very small sets of data (see, 
e.g., Chi, 1991; Brown and Kempton, 1994). It is our belief that the asymptotic nature of these 
techniques as conventionally described, implemented, and used is not always fully appreciated. 
For example, if between-block information is recovered in an incomplete block experiment, the 
asymptotic estimate of standard error will always be smaller than the conventional estimate from 
the fixed block analysis. The naive user of these methods will get the impression that the former 
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analysis must be superior. Two questions follow. First, to what extent is the asymptotic 
approximation of precision, and associated-methods of inference, inadequate in any given situation? 
Second, in what situations is it not worth using generalized least squares as opposed to a simpler 
unweighted procedure? We have not addressed the second question directly in this paper, but the 
results presented in Section 2 that bear directly on the first can be used to provide a more meaningful 
approach to answering it. We propose that the adjusted estimates of precision, together with their 
associated Wald statistics, be used to compare methods of estimation when samples cannot be 
regarded as large. The size of the adjustment itself provides a measure of when a sample might be 
regarded as small and can be used in this way in data analysis as well. 

We have seen in the simulation study that there are practically relevant situations in which a 
small sample adjustment is a necessity, and we have seen that the proposed measures of precision 
and Wald-type pivots perform acceptably well in a range of settings. Simulation studies of simpler 
situations not presented here, such as incomplete block designs and other crossover trials, produced 
the same conclusions. 

The calculation of the scale factor for the Wald statistics allows us to include as special cases 
those settings where the statistics have exact F distributions. Further, it leads to consistency 
among the degrees of freedom associated with Wald statistics for nested linear combinations of 
fixed effects. The overall procedure can therefore be applied in an automatic way to construct tests 
and confidence intervals for fixed effects without first having to separate out special cases, such as 
analysis of variance F-ratios. All such special forms will be reproduced exactly by the procedure. 
The degrees of freedom and scale factor also provide some insight into the structure of the data 
and model. 

In the simulations, it was seen that the estimated scale factor is very stable indeed, exhibiting very 
little variation among runs. The estimated denominator degrees of freedom of the F approximation 
were more variable than the scale factor, but not excessively so and were well within acceptable 
limits. 

The observed performance of the proposed procedure should not be taken to imply, however, 
that it will always be so successful, and we conjecture that nonlinear covariance structures are more 
likely to provide examples where the procedure fails to behave acceptably well. In our experience, 
the parameterization of a nonlinear structure can have a great influence on the behavior. The 
Taylor series expansions on which the approximations are based may also prove less acceptable 
when variance or covariance components are constrained to be positive or positive definite and 
when there is a nonnegligible probability of estimates falling on a boundary. 
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RESUME 

Le maximum de vraisemblance restreint (REML) est maintenant bien etabli comme une methode 
d'estimation des parametres du modele lineaire general Gaussien avec une structure de matrice 
de covariance, en particulier pour les modeles mixtes. En general la precision des estimateurs 
et l'inference pour les effets fixes sont fondes sur leurs distributions asymptotiques dont on sait 
qu'elles ne conviennent pas dans les cas de petits echantillons. Dans cet article nous presentons 
une statistique de Wald, ayant aussi une approximation de sa distribution d'echantillonnage par un 
F, dont on montre qu'elle est performante pour une plage de petits echantillons. Cette statistique 
utilise un estimateur ajuste de la matrice de covariance ce qui reduit le biais d'echantillonnage. 
Cette approche presente l'avantage qu'on retrouve a la fois les statistiques et les distributions F 
dans les situations oiu on a les distributions exactes, c'est-a-dire pour les statistiques de type T2 de 
Hotteling et pour les rapports de Fisher de l'analyse de variance. La performance des statistiques 
modifiees est mise en evidence avec des etudes de simulation de quatre diff6rentes analyses avec le 
REML et les methodes sont illustrees avec trois exemples. 
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