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Abstract

When testing for reduction of the mean values structure in linear mixed models, it is
common to use an asymptotic χ2 test. This test can however be very poor for small and
moderate sample sizes. This paper describes the two main contributions of the pbkrtest
package. The package implements a Kenward–Roger approximation for performing F–
tests for reduction of the mean structure and also parametric bootstrap methods for
achieving the same goal. In addition to describing the methods and aspects of their
implementation, the paper also contains several examples and comparison of the various
methods.

Keywords: adjusted degree of freedom, denominator degree of freedom, linear mixed model,
lme4, R, parametric bootstrap, Bartlett correction .

1. Introduction

In this paper we address the question of testing for reduction of the systematic components in
mixed effects models. Attention is restricted to models which a linear and where all random
effects are Gaussian. The focus in this paper is on the implementation of these models in the
lme4 package, Bates, Maechler, and Bolker (2011) for R, in particular the lmer() function.

It is always possible to exploit that the likelihood ratio test statistic has a limiting χ2 distri-
bution as the amount of information in the sample goes to infinity. However for small and
moderate sample sizes this approximation can be poor and lead to misleading conclusions.
For certain types of studies it is possible to base the inference on an F–statistic. Such studies
generally need to be balanced in some way in the sense the number of observations in each
treatment group should be the same and so on. These balance requirements can often not
be met in practice and there is therefore a need for tests which, for a fairly large class of
linear mixed models, are better than the χ2 test and which are relatively easy to compute in
practice.

The paper is structured as follows: Section 2 describes the problem addressed in more detail
and sets the notation of the paper. Section 3 illustrates the problems related to tests in mixed
models through several examples. In Section 4 describe the approach taken by Kenward and
Roger (1997) to address the inference problem. Section 5 describes an alternative approach
based on parametric bootstrap methods. In Section 6 we apply the methods to several data
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sets. Section 7 contains a discussion and outlines some additional improvements that can be
made to the implementation in pbkrtest.

2. Preliminaries and Notation

In this paper we focus on linear mixed models which, in the formulation of Laird and Ware
(1982), are of the form

YN = XN×pβp + ZN×ubu + εN (1)

where Y is an N vector of observables with covariance Var(Y) = ΣN×N . Above, X and Z
are the design matrices of the fixed and random effect, b is the random effects distributed
as bu ∼ N(0,Γu×e) and ε ∼ N(0, σ2IN×N ) is the residual errors where IN×N is the N ×N
identity matrix. It is assumed that b and ε are independent. This model is a simplification
of the model proposed in Laird and Ware (1982), who allow the covariance matrix of ε to be
a general positive definite matrix.

We are interested testing hypotheses about reductions of the mean value in (1), i.e. testing

M0 : Y = X0β0 + Zb + ε (2)

where C(X0) ⊂ C(X) and C(X) denotes the column space of X. Let d = dim(C(X)) −
dim(C(X0)). Notice that the structural forms of the random components of the two models
are mes identical.

In some situations a test for E(Y) = X0β0 under E(Y) = Xβ can be made as an F–test;
one example is given in Sec. 3. However, in many practical cases, such an exact F–test is not
available and one often resorts to asymptotic tests. One approach is based on the likelihood
ratio (LR) test statistic T which is twice the difference of the maximized log–likelihoods

T = 2(logL− logL0). (3)

T has under the hypothesis an asymptotic χ2
d distribution.

The reduction of the large model to the small model can equivalently be expressed by the
equation Lβ = 0 with a non-singular d × p restriction matrix L. A test of the more general
hypothesis L(β − βH) = 0 can be based on the Wald test statistic

W = (β̂ − βH)>L>(L>V̂L)−1L(β̂ − βH), (4)

where β̂ is an estimate for β and V̂ for the covariance matrix of β̂.

In this paper we focus on the case where βH = 0. In Appendix B it is shown how L can be
constructed from X and X0. Under the hypothesis, W also has an asymptotic χ2

d distribution
and the Wald and the LR test are hence asymptotically equivalent.

The approximation of the null–distribution of T or W by a χ2
d distribution can for small

samples be quite poor and this can lead to misleading conclusions. Nonetheless, this approx-
imation is often used in practice – mainly because of the lack of attractive alternatives.

This paper is aimed at providing some remedies for this.
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• Kenward and Roger (1997) provide a modification of W given in (4). They also argue
that this modified statistic can be evaluated in an Fd,m distribution for which they
provide a method for estimating the denominator degrees of freedom m. We have
implemented their work in the function KRmodcomp() for models of the form (1); notice in
particular that attention is restricted to models for which the residuals are independent
and have constant variance. Throughout this paper we shall refer to Kenward and Roger
(1997) as K&R.

• The second contribution of this paper is to determine either the full null–distribution or
moments of the null–distribution of the LR test statistic (3) by a parametric bootstrap
approach (Harville and Hinkley 1997, chapter 4).

3. The Degree of Freedom Issue for Linear Mixed Models

In this section we discuss the degree of freedom issue on the basis of the dataset beets in the
doBy package. The beets data come from a split–plot experiment. Although the classical
analysis of split plot experiments is described many places in the literature, see e.g. Cochran
and Cox (1957, chapter 7), we treat the topic in some detail in order to put the other parts
of the article into a context.

3.1. The Sugar Beets Example

The experiment was laid out as follows: The effect of harvest time and sowing time on i) yield
(in kg) and ii) sugar percentage of sugar beets is investigated. Five different sowing times
and two different harvesting times were used and the experiment was laid out in three blocks.
The experimental plan is as follows:

Experimental plan for sugar beets experiment

Sowing times:

1: 4/4, 2: 12/4, 3: 21/4, 4: 29/4, 5: 18/5

Harvest times:

1: 2/10, 2: 21/10

Plot allocation:

| Block 1 | Block 2 | Block 3 |

+--------------------|--------------------|--------------------+

Plot | h1 h1 h1 h1 h1 | h2 h2 h2 h2 h2 | h1 h1 h1 h1 h1 | Harvest time

1-15 | s3 s4 s5 s2 s1 | s3 s2 s4 s5 s1 | s5 s2 s3 s4 s1 | Sowing time

|--------------------|--------------------|--------------------|

Plot | h2 h2 h2 h2 h2 | h1 h1 h1 h1 h1 | h2 h2 h2 h2 h2 | Harvest time

16-30 | s2 s1 s5 s4 s3 | s4 s1 s3 s2 s5 | s1 s4 s3 s2 s5 | Sowing time

+--------------------|--------------------|--------------------+

Each block is sub–divided into two plots (called whole–plots in the experimental design litera-
ture) which are harvested at two different time points. Each whole–plot is further sub–divided
into five plots (called split–plots) and each of the five sowing times were applied to one of
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these split–plots. All together there are hence 6 whole–plots and 30 split–plots. The harvest
time is called the whole–plot treatment and the sowing time is called the split–plot treatment.
The area of each split plot was 25m2.

In the following i denotes harvest time (i = 1, 2), j denotes block (j = 1, 2, 3) and k denotes
sowing time (k = 1, . . . , 5). Let I = 2, J = 3 and K = 5. For simplicity we assume that
there is no interaction between sowing and harvesting times (this assumption is supported by
Fig. 1). Then a typical model for such an experiment would be:

yijk = µ+ αi + βj + δk + Uij + εijk, (5)

where Uij ∼ N(0, ω2) and εijk ∼ N(0, σ2). Notice that Uij describes the random variation
between whole–plots (within blocks).
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Figure 1: Dependence of sugar percentage and yield [kg] on sowing times and harvest time.

3.2. The Asymptotic χ2 Test

Using the lmer() function from lme4, (Bates et al. 2011) we can fit the models and test for
no effect of sowing and harvest time as follows:

> library(lme4)
> data(beets, package='doBy')
> beet0<-lmer(sugpct~block+sow+harvest+(1|block:harvest), data=beets, REML=FALSE)
> beet_no.harv <- update(beet0, .~.-harvest)
> beet_no.sow <- update(beet0, .~.-sow)

We then proceed by testing for no effect of sowing and of harvesting times:

> as.data.frame(anova(beet0, beet_no.sow))

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
beet_no.sow 6 -2.795177 5.612008 7.397588 NA NA NA
beet0 10 -79.997378 -65.985404 49.998689 85.2022 4 1.374278e-17

> as.data.frame(anova(beet0, beet_no.harv))
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Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
beet_no.harv 9 -69.08356 -56.47278 43.54178 NA NA NA
beet0 10 -79.99738 -65.98540 49.99869 12.91382 1 0.0003261646

These tests are based on the limiting χ2 distribution of the LR test statistic and suggest a
highly significant effect of both sowing and harvesting times. However the test for no effect
of harvesting time is misleading because the hierarchical structure of the data has not been
appropriately accounted for. We shall discuss this important issue in detail below.

3.3. The Exact F Test

Consider a comparison of two sowing times and of two harvesting times:

yij1 − yij2 = δ1 − δ2 + εij1 − εij2 ∼ N(δ1 − δ2, 2σ2) (6)

y1jk − y2jk = α1 − α2 + U1j − U2j + ε1jk − ε2jk ∼ N(α1 − α2, 2ω
2 + 2σ2). (7)

For the sowing times the whole plot variation cancels out whereas the whole–plot variation
prevails for the harvest times. This means that the effect of whole–plot treatments are de-
termined with smaller precision than the effect of split–plot treatments. In some applications
(for example if whole–plots are animals and split plots correspond to an application of a
treatment at different time points) it is often the case that ω2 is considerably larger than σ2.
Estimated contrasts for sowing times and harvesting times hence become

1

IJ

∑
ij

(yij1 − yij2) ∼ N(δ1 − δ2,
2

IJ
σ2) (8)

1

JK

∑
jk

(y1jk − y2jk) ∼ N(α1 − α2,
2

J
ω2 +

2

JK
σ2). (9)

The variance in (9) is larger than the variance in (8) only if ω2 > σ2(K − I)/(KI). For
example in the sugar beets example, (K − I)/(KI) = 3/10.

Test for no effect of harvest time

Next we consider test statistics. We shall use the notation yi++ =
∑

jk yijk and ȳi++ =

yi++/(JK) etc. Also we let σ̃2 = ω2 + σ2/K. The test for no effect of harvest times is based
on the marginal model obtained after averaging over the sowing times, i.e.

ȳij+ = µ+ αi + βj + δ̄+ + Ūij + ε̄ij+ ∼ N(µ+ αi + βj + δ̄+, σ̃
2). (10)

Observe that ȳij+ in (10) has the structure of a model for a balanced two–way layout without
replicates. Let SSI =

∑
ijk(ȳi++−ȳ+++)2 be the sums of squares associated with harvest time.

A direct calculation shows that E(SSI) = QI+(I−1)[Kω2+σ2] where QI = JK
∑

i(αi−ᾱ+)2.
The corresponding mean squares MSI = SSI/(I−1) then has expectation E(MSI) = QI/(I−
1) + [Kω2 + σ2]. As QI = 0 iff all αi are identical, MSI can be used for constructing a test
for no effect of harvesting time. The relevant error sum of squares becomes the residual
sum of squares in the marginal model (10), i.e. SSI+J =

∑
ijk(ȳij+ − ȳi++ − ȳ+j+ + ȳ+++)2.

A direct calculation shows that E(SSI+J) = (I − 1)(J − 1)[Kω2 + σ2]. Define MSI+J =
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SSI+J/[(I − 1)(J − 1)]. Then E(MSI+J) = [Kω2 + σ2] and from this we obtain the F–
statistic for testing for no effect of harvesting time:

F =
MSI
MSI+J

∼ F(I−1),(I−1)(J−1) under the hypothesis. (11)

Test for no effect of sowing time

The test for no effect of sowing time is straight forward. Let SSK =
∑

ijk(y++k − ȳ+++)2 =∑
ijk((δk − δ̄+) + (ε̄++k − ε̄+++))2 be the sum of squares associated with sowing times and

let MSK = SSK/(K − 1). Following the notation from above a direct calculation shows that
E(MSK) = QK/(K − 1) + σ2. The corresponding error term becomes SSε =

∑
ijk(yijk −

yij+− y++k + y+++)2. which is the residual sum of squares for a linear normal model with an
effect of sowing time plus an interaction between harvest time and block. Define the mean
squares as MSε = SSε/(IJ − 1)(K − 1) and a direct calculation shows that E(MSε) = σ2 so
the F–statistic for no effect of sowing times becomes

F =
MSK
MSε

∼ F(K−1),(IJ−1)(K−1) under the hypothesis. (12)

Making the relevant F–tests with aov()

The aov() function makes the tests in (11) and (12) as follows:

> beets$bh <- with(beets, interaction(block, harvest))
> summary(aov(sugpct~block+sow+harvest+Error(bh), beets))

Error: bh
Df Sum Sq Mean Sq F value Pr(>F)

block 2 0.03267 0.01633 2.579 0.2794
harvest 1 0.09633 0.09633 15.211 0.0599 .
Residuals 2 0.01267 0.00633
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

sow 4 1.01 0.2525 101 5.74e-13 ***
Residuals 20 0.05 0.0025
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hence, when the hierarchical structure of the experiment has been accounted for, the effect
of harvesting time is not significant at the 5% level.

3.4. The Mississippi Influents Example

The Mississippi dataset in the SASmixed package contains the nitrogen concentration (in
PPM) from several sites at six randomly selected influents of the Mississippi river.

> data(Mississippi, package='SASmixed')
> Mississippi$influent <- factor(Mississippi$influent)
> Mississippi$Type <- factor(Mississippi$Type)
> head(Mississippi)
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influent y Type
1 1 21 2
2 1 27 2
3 1 29 2
4 1 17 2
5 1 19 2
6 1 12 2

The influents were characterized according to watersheds as follows. Type=1: No farmland in
watershed (influents no. 3 and 5); Type=2: Less than 50% farmland in watershed (influents
no. 1,2 and 4); Type=3: More than 50% farmland in watershed (influent no. 6). Measurements
from the same influent are expected to be similar and there is no particular interest in the
individual influents. It is more interesting to investigate the effect of the watershed type on
the nitrogen concentration.
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Figure 2: Nitrogen concentration in PPM at six different influents of the Mississippi differen-
tiated for three types of watershed.

A typical model for such data would be

yi = αType(i) + Uinfluent(i) + εi

where Ul ∼ N(0, ω2) and εi ∼ N(0, σ2). The LR–test suggests that the effect of Type is highly
significant:

> miss1 <- lmer(y~Type+(1|influent), data=Mississippi, REML=FALSE)
> miss0 <- update(miss1, .~.-Type)
> anova(miss1, miss0)

Data: Mississippi
Models:
miss0: y ~ (1 | influent)
miss1: y ~ Type + (1 | influent)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
miss0 3 262.56 267.39 -128.28
miss1 5 256.57 264.63 -123.29 9.9834 2 0.006794 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Trusting large sample asymptotic results is questionable. If data been balanced such there
were the same number of influents for each watershed type and the same number of recordings
for each influent, then we could have made a proper F–test along the lines of Section 3.1.
An alternative is clearly to analyze the means for each influent and this yields a much less
clear indication of an effect of watershed type:

> Miss.mean <- summaryBy(y~influent+Type, data=Mississippi, FUN=mean)
> miss1_lm <- lm(y.mean~Type, data=Miss.mean)
> anova(miss1_lm)

Analysis of Variance Table

Response: y.mean
Df Sum Sq Mean Sq F value Pr(>F)

Type 2 298.276 149.138 7.0702 0.07322 .
Residuals 3 63.282 21.094
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4. Approximate F-statistics and the KR–Approximation

In this section we describe first the K&R approach of testing the hypothesis L(β − βH) = 0
for a more general model than (1). We describe then the class of linear mixed models fitted
with lmer() for which the KRmodcomp() of the package pbkrtest provides the K&R approach.

4.1. A Multivariate Normal Model

K&R consider for Y the multivariate normal model

Y ∼ N(Xβ,Σ).

The covariance-matrix Σ(γ) is assumed to be a function of M parameters collected in the
vector γ. We denote the REML estimates of these parameters with γ̂. The unbiased (Kackar
and Harville 1984) REML estimate of β is then

β̂ = Φ(γ̂)X>Σ(γ̂)−1Y with Φ(γ̂) =
(
X>Σ(γ̂)−1X

)−1
. (13)

Here, Φ is the covariance matrix of the asymptotic distribution of β and Φ(γ̂) is a consistent
estimate of this covariance matrix.

A scaled Wald-type statistics of testing the hypothesis L(β − βH) = 0 is

F =
1

d
(β̂ − βH)>L>(L>V̂L)−1L(β̂ − βH) (14)

where V̂ is some positive definite symmetric matrix.

Notice that the usual Wald test-statistic uses V̂ = Φ(γ̂). In this case F has asymptotically a
1
dχ

2
d distribution (which can be thought of as the limiting distribution of an Fd,m–distribution

when m→∞.) For some models, F has an exact F–distribution under the hypothesis. One
example of this is a balanced one–way analysis of variance.



Ulrich Halekoh, Søren Højsgaard 9

4.2. The Approach of Kenward and Roger

K&R modify F in (14) to improve the small sample properties by approximating the dis-
tribution of F by an F–distribution, and they also provide a method for calculating the
denominator degrees of freedom. The fundamental idea is to calculate the approximate mean
and variance of their statistic and then match moments with an F–distribution to obtain the
denominator degrees of freedom. K&R left out some detail in the derivation of their method.
Alnosaier (2007) provides more details, weakens some of the assumptions for the approach,
and extends the list of models for which it is known that the approach yields exact F -tests.

K&R take two steps to improve the small sample distributional properties of F . Firstly,
Kackar and Harville (1984) showed that the covariance matrix of β̂ can be written as the sum
Var(β̂) = Φ + Λ where Λ expresses the bias by which the asymptotic covariance matrix Φ
underestimates Var(β̂). K&R combine a Taylor approximation to Λ with a biased corrected
modification of Φ(γ̂) using second order Taylor expansion to derive a new estimate ΦA(γ̂).
In the statistic F in (14), K&R replace the matrix V̂ with V̂ = ΦA(γ̂).

Secondly, K&R derive a scaling factor λ (such that the statistic they consider is λF ) and a
denominator degree of freedomm by matching approximations of the expectation and variance
of λF with the moments of a Fd,m distribution. In more detail, K&R derive an approximation
for the expectation E? and variance V ? based on a first order Taylor expansion of F . Then
they solve the system of equations

E(F ) ≈ λE? = E(Fd,m) =
m

m− 2
, (15)

Var(F ) ≈ λ2V ? = Var(Fd,m) =
2m2(d+m− 2)

d(m− 2)2(m− 4)
= {E(Fd,m)}2 2(d+m− 2)

d(m− 4)
, (16)

where E(Fd,m) and Var(Fd,m) denote expectation and variance of a Fd,m–distributed random
variable. The E? and V ? are slightly modified without changing the order of approximation
such that for the balanced one-way anova model and the Hoteling’s T 2 model the exact F-
tests are reproduced (Alnosaier 2007, chapters 4.1, 4.2). We shall refer to these two steps as
the “Kenward–Roger approximation” (or K&R–approximation in short). The details of the
computations are provided in Appendix A.1. Recall that the mean of a Fd,m distribution
exists provided that m > 2 and the variance exists provided that m > 4. The moment
matching method does however not prevent estimates of m that are smaller or equal to 2.
K&R did not address this problem and we did neither in our implementation.

4.3. Models for which KRmodcomp() Provides Tests

The KRmodcomp() function of the pbkrtest package provides the KR–approximation for linear
mixed models of the form (1) where Σ is a sum of know matrices

Σ =
∑
r

γrG
N×N
r + σ2IN×N . (17)

The matrices Gr are usually very sparse matrices. Variance component models and random
coefficient models are models which have this simplified covariance structure. For details we
refer to Appendix A.1.

5. Parametric Bootstrap
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An alternative approach is based on parametric bootstrap, and this is also implemented in
pbkrtest. The setting is the LR test statistic T for which we have an observed value tobs.
The question is in which reference distribution tobs should be evaluated; i.e. what is the null–
distribution of T . Instead of relying on the approximation of the null–distribution by a χ2

d

distribution one can use parametric bootstrap:

First, create B (e.g. B = 1000) bootstrap samples y1, . . . , yB by simulating from f̂0(y) (where
f̂0 denotes the fitted distribution under the hypothesis). Next, calculate the corresponding
values T ∗ = {t1, . . . , tB} of the LR test statistic. For what follows, let E∗T and V ∗T denote
sample mean and sample variance of T ∗. These simulated values can then be regarded as
samples from the null–distribution and these values can be used in different ways which
are implemented in the PBmodcomp() function. The labels below refer to the output from
PBmodcomp(), see Section 6:

PBtest: Direct calculation of tail probabilities: The values T ∗ provide an empirical null–
distribution in which tobs can be evaluated. Let I(x) is an indicator function which is 1
if x is true and 0 otherwise. The p–value then becomes the tail probability in T ∗, i.e.

p =
1

B

B∑
k=1

I(tk ≥ tobs), (18)

PBkd: Approximate null–distribution by a kernel density estimate. The p–value is then cal-
culated from the kernel density estimate.

Gamma: Approximate the null–distribution by a gamma distribution with mean E∗T and vari-
ance V ∗T .

Bartlett: Improving the LR test statistic by a Bartlett type correction: The LR test statistic
T can be scaled to better match the χ2

d distribution as

TB =
d

E∗T
T.

F: Approximate the null–distribution of T/d by an Fd,m distribution with mean E∗/d. This
yields a single equation for deriving m, namely m = 2E∗T /(E

∗
T − d).

We shall make the following remarks to the quantities mentioned in the listing above (in
Section 6 we also provide a graphical illustrations of these approaches):

1) Regarding PBtest and PBkd recall that the definition of a p–value for a composite hypothesis
is (see e.g. Casella and Berger (2002), p. 397)

p = sup
θ
Pθ(T > tobs)

where the supremum is taken over all possible values θ = (β0,γ) under the hypothesis. When
this supremum can not be evaluated in practice it is often exploited that for large samples
Pθ is approximately the distribution function for a χ2

d distribution which is independent of
θ. Implicit in (18) is therefore a definition of a bootstrapped p–value to be p = Pθ̂(T > tobs)
and then (18) is used for the calculation. Determining the tail of a distribution as in (18)
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by sampling requires a large number of samples B (but how large B must be depends in
practice obviously on the size of tobs). An alternative is to provide a smooth estimate of
the distribution of the null–distribution by, for example, a kernel density estimate (see e.g.
Silverman and Young (1987))

2) The quantities, Gamma, Bartlett and F are based on assuming a parametric form of the
null distribution such that the null distribution can be determined from at most the first
two sample moments of T ∗. It requires in general fewer samples to obtain credible estimates
for these moments than for obtaining the tail probabilities in (18). We have no compelling
mathematics argument why T ∗ should be well approximated by a Gamma distribution but
simulations suggests this to be the case. Moreover, since a χ2

d distribution is also a Gamma
distribution, it is appealing to approximate T ∗ by a Gamma distribution where we match
the first two moments. In practice this means that we obtain a distribution with heavier tail
than the χ2

d distribution. The idea behind adjusting the LR test statistic by a Bartlett type
correction as in TB = T

E∗T /d
is to obtain a a statistic whose distribution becomes closer to a

χ2
d distribution, cfr. Cox (2006), p. 130. See also e.g. Jensen (1993) for a more comprehensive

treatment of Bartlett corrections. Approximating the distribution of T/d by an Fd,m distri-
bution can be motivated as follows: Under the hypothesis, T is in the limit χ2

d distributed so
T/d has in the limit a χ2

d/d distribution with expectation 1 and variance 2/d. This is, loosely
speaking, the same as an Fd,m distribution with an infinite number of denominator degrees
of freedom m. By estimating m as m = 2E∗T /(E

∗
T − d) we obtain the increased flexibility of

an F distribution with a larger variance than 2/d, i.e. a distribution with a heavier tail than
that of a χ2

d/d distribution.

3) Lastly, a general problem with the parametric bootstrap approach is that it is computa-
tionally intensive (so is the K&R–approximation, too). However the pbkrtest package allows
for the samples to be drawn in parallel by utilizing several processors on the computer.

6. Applications of the Methods

This section contains applications of the methods described in Section 4 and Section 5 to the
examples in Section 3. This section also contains additional examples.

6.1. The Sugar Beets Example

For the sugar beets example of Section 3.1, the K&R–approximation provides the following
results. The test for the harvest time yields

> (kr.h <- KRmodcomp(beet0, beet_no.harv))

F-test with Kenward-Roger approximation; computing time: 0.07 sec.
Large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)

Fstat df1 df2 p.value F.scaling
15.20898 1 2.000383 0.0598849 1

and for the effect of sow time one gets

> (kr.s <- KRmodcomp(beet0, beet_no.sow))

F-test with Kenward-Roger approximation; computing time: 0.07 sec.
Large : sugpct ~ block + sow + harvest + (1 | block:harvest)
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small : sugpct ~ block + harvest + (1 | block:harvest)
Fstat df1 df2 p.value F.scaling

101.0001 4 20 0 1

Similarly, for parametric bootstrap we obtain:

> library("pbkrtest")
> NSIM <- 200
> (pb.h <- PBmodcomp(beet0, beet_no.harv, nsim=NSIM))

Parametric bootstrap test; bootstrap samples: 200 computing time: 7.41 sec.
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)

stat df p.value ddf
LRT 12.91382 1 0.0003262 NA
PBtest 12.91382 NA 0.0555556 NA
PBkd 12.91382 NA 0.0547671 NA
Bartlett 3.45368 1 0.0631111 NA
Gamma 12.91382 NA 0.0412859 NA
F 12.91382 1 0.0429941 2.73

> (pb.s <- PBmodcomp(beet0, beet_no.sow, nsim=NSIM))

Parametric bootstrap test; bootstrap samples: 200 computing time: 2.68 sec.
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + harvest + (1 | block:harvest)

stat df p.value ddf
LRT 85.20220 4 0.0000000 NA
PBtest 85.20220 NA 0.0000000 NA
PBkd 85.20220 NA 0.0000000 NA
Bartlett 63.13979 4 0.0000000 NA
Gamma 85.20220 NA 0.0000000 NA
F 21.30055 4 0.0003056 7.724

First, it is noted that the p–values reported from both KRmodcomp() and PBmodcomp() gen-
erally are 1) within the same order of magnitude and 2) close to the results of the exact
F–test of Section 3.1. Hence the results would all suggest the same qualitative conclusion,
namely that there is little (if any) evidence for an effect of harvest time and strong evidence
for an effect of sowing time. Secondly, it is noticed that KRmodcomp() is much faster than
PBmodcomp() in these examples. However the difference in computing time is much smaller
for other types of models / datasets; for example for certain random regression models (not
reported in this paper).

It is illustrative to look at a graphical representation of the results PBmodcomp() for a large
number of bootstrap samples. We draw 5000 bootstrap samples for testing of no effect of
harvest time for the sugar beets example as follows:

> pb.h <- PBmodcomp(beet0, beet_no.harv, nsim=5000)

Parametric bootstrap test; bootstrap samples: 2664 computing time: 121.26 sec.
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)

stat df p.value ddf
LRT 12.913822 1 0.0003262 NA
PBtest 12.913822 NA 0.0581832 NA
PBkd 12.913822 NA 0.0614923 NA
Bartlett 2.905237 1 0.0882923 NA
Gamma 12.913822 NA 0.0543317 NA
F 12.913822 1 0.0470218 2.581
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The output shows that much fewer samples than 5000 are available. This is because lmer()

often fails to refit models based on simulated data. Figure 3 shows the histogram of the
simulated values for the null-distribution. The solid vertical line to the right is the observed
value of the LR test statistic (which is also the F–statistic as there is only d = 1 degree of
freedom). The dashed vertical line to the left is the Bartlett corrected statistic. The various
estimated densities are overlaid the histogram. Of the parametric densities, the best overall fit
to the simulated null-distribution is provided by the Gamma distribution. The χ2 distribution
approximates the simulated null-distribution very poorly. The kernel density, the Gamma and
the F distributions all provide estimates of the tail probabilities that are similar to each other
and to the p–value of the proper F–test provided in Section 3.

D
en

si
ty

0 5 10 15 20

0.
00

0.
10

0.
20

0.
30 Kernel density

Chi−square
Gamma
F

Figure 3: Histogram of simulated null-distribution for testing of no effect of harvest time
for the sugar beets example with approximately 2500 samples. The solid vertical line to the
right is the observed value of the LR test statistic. The dashed vertical line to the left is the
Bartlett corrected statistic. The various estimated densities are overlaid the histogram.

Figure 4 shows the same as Figure 3 but with much fewer samples. It is much less clear which
of the parametric densities fit best to the samples. However the p–values are similar to those
found above with many samples and they certainly suggest the same qualitative conclusion:
there is no effect of harvesting time.

> pb.h <- PBmodcomp(beet0, beet_no.harv, nsim=100)

Parametric bootstrap test; bootstrap samples: 48 computing time: 2.64 sec.
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)

stat df p.value ddf
LRT 12.913822 1 0.0003262 NA
PBtest 12.913822 NA 0.0625000 NA
PBkd 12.913822 NA 0.0902998 NA
Bartlett 2.807526 1 0.0938230 NA
Gamma 12.913822 NA 0.0689132 NA
F 12.913822 1 0.0477480 2.556

6.2. The Mississippi Influents Example
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Figure 4: Histogram of simulated null-distribution for testing of no effect of harvest time for
the sugar beets example with approximately 50 samples. The solid vertical line to the right is
the observed value of the LR test statistic. The dashed vertical line to the left is the Bartlett
corrected statistic. The various estimated densities are overlaid the histogram.

For the Mississippi data of Section 3.4 our methods provide the following results:

> KRmodcomp(miss1, miss0)

F-test with Kenward-Roger approximation; computing time: 0.07 sec.
Large : y ~ Type + (1 | influent)
small : y ~ (1 | influent)

Fstat df1 df2 p.value F.scaling
6.368942 2 3.320734 0.0730335 0.9996716

> PBmodcomp(miss1, miss0)

Parametric bootstrap test; bootstrap samples: 200 computing time: 7.22 sec.
large : y ~ Type + (1 | influent)
small : y ~ (1 | influent)

stat df p.value ddf
LRT 9.983400 2 0.0067941 NA
PBtest 9.983400 NA 0.0500000 NA
PBkd 9.983400 NA 0.0465924 NA
Bartlett 5.566118 2 0.0618490 NA
Gamma 9.983400 NA 0.0472003 NA
F 4.991700 2 0.0717257 4.52

Hence we obtain p–values which are in the order of 10 times the p–value provided by the χ2

approximation. The p–values we obtain are in good accordance with the p–value obtained
when analyzing the means as done in Section 3.4.

6.3. Random Regression – A Simulation

K&R perform a small simulation study on a simple random regression model. We made a
simulation using the same model set–up and use it to compare the results between the different
tests we provide and to the K&R approach as implemented by the MIXED procedure of the
SAS software system for Windows (version 9.2) (SAS).
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Kenward and Roger (1997, table 4) consider the following random coefficient model

yjt = β0 + β1 · tj +Aj +Bj · tj + εjt

with

Cov(Aj , Bj) =

[
0.250 −0.133
−0.133 0.250

]
and Var(εit) = 0.25. (19)

There are observed i = 1, . . . , 24 subjects divided into three groups of eight subjects. For each
group observations are made at the non overlapping times t = 0, 1, 2; t = 3, 4, 5 and t = 6, 7, 8.
The data for the simulation were generated under the assumption that β0 = β1 = 0, the
Ai, Bi and εi are normally distributed with zero expectation, Ai, Bi are independent from εi
and observations from different subjects are independent.
The full model and the reduced models are fitted by

> mod1<-lmer(y~A + t + (1+t|subject))
> modZEROintercept<-lmer(y~0 + t + (1+t|subject))
> modZEROslope<-lmer(y~A + (1+t|subject))

Parm α× 100 LR KR(R) KR(SAS) PBtest PBkd Bartlett Gamma F

β1 1 1.6 0.7 1.4 1.4 1.4 1.3 1.5 0.8
β2 1 1.8 1.2 1.0 1.3 1.4 1.2 1.4 0.8

β1 5 7.0 4.3 5.2 6.1 6.0 5.8 6.2 5.2
β2 5 6.9 5.5 5.1 5.5 5.5 5.3 5.6 5.1

β1 10 13.5 9.4 10.0 11.7 11.6 11.6 11.9 11.3
β2 10 12.8 10.7 10.0 10.5 10.4 10.4 10.5 10.6

Table 1: Observed test sizes (×100) for three test levels α = 0.01, 0.05, 0.1 for H0 : βk = 0
from the random coefficient model. The results are based on 20000 simulations, for the boot-
strapped p-values 500 subsamples were taken. KR(R) and KR(SAS) are the K&R approxima-
tions as implemented in KRmodcomp() and SAS, the other results refer to the null-distribution
of the log-likelihood ratio test-statistic, either the χ2 appoximation (LR) or bootstrapped val-
ues. PBtest relates to the raw parametric bootstrap p-value. The other p-values are based on
approximations to the boostrap distribution either via a kernel-density, a Bartlett correction,
a Gamma or a F distribution.

The likelihood-ratio test is for both parameters and for all α’s anti-conservative as expected.
For all other approaches the observed test-levels are closer to the nominal levels and in most
cases anti-conservative. The Kenward-Roger approach from our implementation yields con-
servative results for the tests on the intercept parameter β1 and the test in columns F yields
conservative results for the lowest nominal level. The difference of the results of the Kenward-
Roger approach between our implementation and that of SAS may lie in the different treat-
ment of cases in which the covariance matrix Γ is singular.

7. Discussion

In this paper we have presented our implementation of a K&R–approximation for tests in
linear mixed models. In the implementation, there are several matrices of the order N × N
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whereN is the number of observations. We have exploited that several of the matrices involved
in the computations will in many cases will be sparse via the facilities in the Matrix package.
Nonetheless, the current implementation of the K&R–approximation does not always scale to
large datasets. As an example, consider a repeated measurement problem in which repeated
measurements are made on a collection of subjects. It there are many subjects and the time
series for each subject is short then there is a sparseness to be exploited. On the other hand, if
there are a few long time series then the matrices involved will have a non–negligible number
on non–zero elements. One approach to speed up the computations is to compute the average
of the observed and expected information matrices rather than the expected information
matrix. This can lead to substantial improvements in computing time because some of the
computationally most intractable terms vanish in the average information. See Gilmour,
Thompson, and Cullis (1995) and Jensen, Mantysaari, Madsen, and Thompson (1996) for
details. This may become available in later versions of pbkrtest. A very specific issue which
we have no clear answer to is how the K&R–approximation should be modified in case of a
singular estimate of the covariance matrix.

Contrary to the K&R–approximation, the parametric bootstrap approach has the advantage
that it is easy to implement; all that is required is a way of sampling data from fitted model
under the hypothesis. Furthermore the parametric bootstrap approach is straight forward
to implement for other types of problems, for example for logistic regression and other types
of generalized linear models and for generalized linear mixed models. A problem with the
parametric bootstrap approaches is the randomness of the results; repeated applications to
the same dataset does not give entirely identical results. Moreover, calculating the reference
distribution by sampling is computationally demanding. However, pbkrtest implements the
possibility of parallel computing of the reference distribution using multiple processors via
the snow package. There are various possibilities for speeding up the parametric bootstrap
computations: 1) The Bartlett type correction we implemented is such a possibility because
the correction depends only on the mean of the simulated null–distribution and the Gamma
approximation depends only on the mean and variance of the simulated null–distribution.
Estimating these two moments will in general require fewer simulations than estimating the
tail of the the null–distribution. Hence, if one chooses to focus on these two distributions
then one may get credible results with few samples. 2) It may also be possible to devise a
sequential sampling scheme such that sampling stops when the estimates of the first or the
first two moments have stabilized. 3) Instead of fixing the number of parametric bootstrap
samples B in advance, on may instead continue to draw samples until h (e.g. h = 20) values of
the test statistic which are more extreme than the observed test statistic have been obtained.
If this takes B′ samples then the p–value to report is h/B′. If there is little evidence against
the hypothesis then only a small number B′ of simulations would be needed. This idea is
the parametric bootstrap version of the approach of Besag and Clifford (1991) for calculating
sequential Monte Carlo p–values.

An important final comment is that we do not in any way claim that we have found an
omnibus panacea solution to a difficult problem. Instead we have provided two practically
applicable alternatives to relying on large sample asymptotics when testing for the reduction
of the mean value in general linear mixed models.
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A. Technical Details for the KR–Approximation

A.1. Computations Related to the KR–Approximation

In this appendix more details of the implementation of the approach of K&R in KRmodcomp()

is given. First we describe the structure of the design matrix of the random effects Z and the
related structure of the covariance matrix Γ. Secondly, the sequence of computations with
the matrices available from a fitted model object from lmer() and the derived matrices are
given.

Structure for Z and Γ

The description of the structure of Z and Γ draws heavily on the description given in a
vignette of the lme4 package (Bates 2011).

For a linear mixed model fitted with lmer() it is assumed that we have i = 1, . . . f grouping
factors denoted by fi. It is allowed that fi = fi′ for i 6= i′. The ith grouping factor fi has gi
levels and there are qi random effects for each level. The random effects for group level j are
collected in the vector bij = (bij1, . . . bijqi)

> and the random effects of fi are b>i = (b>ij).

It is assumed that the random effects from different grouping factors and from different levels
of a grouping factor are independent, i.e.

Cov(bi,bi′) = 0 for i 6= i′ and Cov(bij ,bij′) = 0 for j 6= j′.

The covariance matrix of the random effects for grouping level j of factor fi is independent of
the grouping level and is denoted by

Var(bij) = Γqi×qii = (γi;rr′).

We assume that all of the elements of Γi are parameters that vary freely except that Γi must
be positive definite. Hence Var(bi) = Igi×gi⊗Γi where Igi×gi the identity matrix of dimension
gi.

For the sugar beet example there is one factor, the interaction Ui′j′ between block and harvest.
In the present notation f = 1, g1 = 6, q1 = 1, b1 = (b1,1, . . . b1,6)

> and Z1 = I6 ⊗ 15 where 15

is a vector of one’s.

For the random coefficient model of the simulation example there is one grouping factor,
subject, with 24 levels, hence f = 1, g1 = 24 and q1 = 2 random effects (Aj , Bj) for subject j

http://support.sas.com/documentation/cdl/en/statugmixed/61807/PDF/default/statugmixed.pdf
http://support.sas.com/documentation/cdl/en/statugmixed/61807/PDF/default/statugmixed.pdf
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such that b1 = (A1, B1, . . . A24, B24),

Z72×48
1 =



1 0
1 1
1 2

. . .
1 6
1 7
1 8


(20)

and Γ1 is the matrix in (19). If in the simulation example the two random effects Aj and Bj
were assumed to be uncorrelated the model would be specified with lmer() as y~lmer(y~A +

t + (1|subject) + (0+t|subject)). Now there are two grouping factors, both are equal
to subject, hence f = 2, g1 = g2 = 24, q1 = q2 = 1, b1 = (A1, . . . A24)

>, b2 = (B1, . . . B24)
>

and

Z72×24
1 =



1
1
1

. . .
1
1
1


, Z72×24

2 =



0
1
2

. . .
6
7
8


. (21)

Let γi = (γi;11, γi;2,1, . . . , γi;qi1, γi;22, . . . , γi;qiqi)
> denote the si = qi(qi + 1)/2 vector of the

elements of the lower triangular Γi. For the kth element γi;k of γi it holds that γi;k = γi;rr′

where k = (r − 1) ∗ (qi − r/2) + r′. Then we may write

Γi =

si∑
k=1

γi;kEi;k.

The Ei;k are the qi × qi symmetric incidence matrices with ones at the position (r, r′) and
(r′, r). Now,

Var(Zibi) = ZiVar(bi)Z
>
i = Zi(I

gi×gi ⊗ Γi)Z
>
i

= Zi(I
gi×gi ⊗

si∑
k=1

γi;kEi;k)Z
>
i =

si∑
k=1

γi;kZi(I
gi×gi ⊗Ei;k)Z

>
i .

With Di =
∑si

k=1 γi:kZi(I
gi×gi ⊗Ei;k)Z

>
i the covariance matrix Σ of Y is

Σ =

f∑
i=1

Var(Zibi) + Var (ε) =

f∑
i=1

Di + σ2IN×N (22)

where f is the number of grouping factors. Let γ denote the vector of length M made by
concatenation of the vectors γi and, as the last element, the σ2. Let Gr = Zi(I

gi×gi⊗Ei;r)Z
>
i

where r refers to the rth element in γ and i is the group factor fi related to the covariance
parameter γr. Note that GM = IN×N .
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Then Σ can be written as a linear combination of known matrices

Σ =
M∑
r=1

γrGr. (23)

For the sugar beets example G1 = I6×6⊗J5×5 where J = 1515>. For the simulation example
G1 = I24×24 ⊗ J3 is related to γ1 = 0.25 and G2 is related to the covariance γ2 = −0.133,
with G2 = diag(I3×3 ⊗A, I3×3 ⊗B, I3×3 ⊗C) and

A =

 0 1 2
1 2 3
2 3 4

 , B =

 6 7 8
7 8 9
8 9 10

 , C =

 12 13 14
13 14 15
14 15 16

 . (24)

The representation (23) has two simplifying consequences. Firstly, the derivative of Σ with
respect to γ is (see e.g. Harville (1997, equation (8.15)))

∂Σ−1

∂γr
= −Σ−1GrΣ

−1.

Secondly, the estimate of the covariance matrix of β̂ can be expressed without using higher
derivatives of Σ−1 (cf. Kenward and Roger (1997, equation (5)).

Implementation of the K&R approach in the KRmodcomp() function

The following estimates are directly provided by lmer(): 1) The parameter estimate β̂, 2)
The vector γ̂ of the REML estimated covariance parameters and 3) The estimate Φ(γ̂) of the
asymptotic covariance matrix of β̂.

The estimate of the covariance matrix for γ̂

Cov(γ̂) = WM×M

is not directly available from lmer(), but is estimated in (26) from the inverse information
matrix, (cf. also Kenward and Roger (1997, equations (4) and (5))).

The implementation of the K&R–approximation in pbkrtest is based on the following quan-
tities.

1. For each covariance parameter γr in γ we use

GN×N
r = Zi(I

gi×gi ⊗Er)Z
>
i , (25)

where i refers to the group for the covariance parameter γr.

2. Then the estimated covariance matrix for Y becomes Σ̂ =
∑M

r γ̂rGr.

3. For the computations to follow, we define the following auxiliary matrices:

• TN×p = Σ−1X

• HN×N
r = GrΣ

−1, r = 1, . . . ,M
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• ON×p
r = GrΣ

−1X = HrX, r = 1, . . . ,M

• ΩN×N
r = ∂Σ−1

∂γr
= −Σ−1GrΣ

−1, r = 1, . . . ,M . Notice that Ωr is not used in any
computation in the implementation in pbkrtest but Ωr appears in the derivations
below.

4. For each covariance parameter γr let

Pp×p
r = X>ΩrX = −X>Σ−1GrΣ

−1X = −T>GrT = −T>Or.

5. For each pair (γr, γs) of covariance parameters let

Qp×p
rs = X>ΩrΣ̂ΩsX = X>Σ−1GrΣ

−1GsΣ
−1X

= T>GrΣ
−1GsT = O>r Σ−1Os.

Notice that Qrs is generally not symmetric but Qrs = Q>sr and hence Qrs + Qsr is
symmetric. This symmetry property is exploited below. Moreover, tr(Qrs) = tr(Qsr).

6. For each pair (γr, γs) of covariance parameters let

Krs = tr(ΩrΣΩsΣ)

= tr(Σ−1GrΣ
−1ΣΣ−1GsΣ

−1Σ) = tr(Σ−1GrΣ
−1Gs).

7. Twice the expected information matrix for γ̂ then becomes:

2 · {IE}rs = Krs − 2 · tr(ΦQrs) + tr(ΦPrΦPs).

Notice that tr(ΦQrs) = tr(ΦQsr) and tr(ΦPrΦPs) = tr(ΦPsΦPr).

8. The asymptotic covariance matrix of the random effects parameters becomes

Cov(γ̂) = WM×M = 2 · I−1E . (26)

9. Define

Up×p =
M∑
r=1

M∑
s=1

Wrs(Qrs −PrΦPs)

=
∑

1≤r<s≤M
Wrs(Qrs + Q>rs −PrΦPs −PsΦPr) +

M∑
r=1

Wrr(Qrr −PrΦPr).

Notice that the last equation holds because of Qsr = Q>rs. Letting Ũ =
∑

1≤r<s≤M Wrs(Qrs−
PrΦPs), one can write alternatively

U = Ũ + Ũ> +

M∑
r=1

Wrr(Qrr −PrΦPr).
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10. The adjusted estimate of Cov(β̂) is then

Φ̂A = Φ(γ̂) + 2 · Λ̂ where Λ̂
p×p

= Φ̂UΦ̂,

and the adjusted test statistic is (where d is the rank of L)

F =
1

d
(β̂ − βH)>L>(LΦ̂AL>)−1L(β̂ − βH).

11. K&R derive a scaling factor λ for the F statistic given above (such that the statistic they
finally propose is λF ) and a denominator degrees of freedomm by matching approximate
first and second moments of the λF statistic with the moments of a Fd,m distribution.
In this connection K&R use the following quantities:

(a) Θ = L>(LΦL>)−1L

(b) A1 =
∑M

r=1

∑M
s Wrs tr(ΘΦPiΦ) tr(ΘΦPjΦ) (where Wrs are the elements of the

covariance matrix W from equation (26)).

(c) With ◦ denoting the Hadamard product,

A2 =
M∑
s

M∑
s

Wrs tr(ΘΦPiΦΘΦPjΦ)

=
M∑
r

M∑
s

Wrs1
>
[
(ΦΘΦPi) ◦ (ΦΘΦPj)

]
1.

(d) B = 1
2d(A1 + 6A2)

(e) E∗ = 1/(1− A2
d )

(f) V ? = 2
d

(
1+c1B

(1−c2B)2(1−c3B)

)
. The cis are simple functions of A1, A2 and d.

(g) ρ = V ∗/(2[E∗]2)

E? and V ? are approximate expectation and variance of F based on the first order
Taylor expansion of F .

12. Then K&R end up with the following values for m and λ:

m = 4 +
d+ 2

dρ− 1
and λ =

m

E∗(m− 2)
. (27)

A.2. Some Numerical Issues

In the computation of ρ we encountered numerical problems in the calculation of ρ for some
models where the division of two numbers both equal to zero are encountered. One can write
the ρ as

ρ =
1

2

(
D

V1

)2

· V0
V2
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where V0 = 1 + c1B, V1 = 1 − c2B, V2 = 1 − c3B and D = 1 − A2/d. The V1 and D can
become simultaneously very small yielding an unreliable ratio D/V1. We resolve this problem
by setting the ratio to 1 if max(|D|, |V1|) < 10−11.

For example, for a simple block design,

Ybt = µ+ αt + εb + εbt, b = 1, . . . , nb, , t = 1, . . . , nt (28)

one has for nt = 2 and nb = 3 or for nt = 3 and nb = 2 an exact F–test with m = 2
denominator degrees of freedom. We have for a specific application of this model found that
D and V1 were very close to zero. If we define the ratio to be 1 in this case then we end up
with the the correct answer, i.e. with m = 2. For the same design but for nt = 2 and nb = 5
or nt = 3 and nb = 3 we have for a specific application found that V2 = 0 which lead to that
ρ = ∞. This caused no problem since the correct m = 4 degrees of freedom are obtained
from equation (27).

B. Construction of a Restriction Matrix

Let Ak×nA and Bk×n be two real matrices with C(A) ⊂ C(B) and nA < n. Then one choice
of a k × n restriction matrix L is L = (I−A(A>A)−A>)B which satisfies

C(A) = {Bb|b ∈ Rn,Lb = 0} (29)

where (A>A)− is a generalized inverse of (A>A).

Proof: Let U = {Bb|b ∈ Rn,Lb = 0}. C(A) ⊂ U is obvious because of the assumption that
C(A) ⊂ C(B). Conversely, U ⊂ C(A) can be seen as follows: PA = A(A>A)−A> is the
orthogonal projection onto C(A). Any vector Bb ∈ C(B) can be written as

Bb = PABb + (I−PA)Bb = PABb + LBb = PABb (30)

and therefore Bb ∈ C(A).

Notice: Another choice of L is the orthogonal projection onto the orthogonal complement of
C(A) in C(B) which is L = (I − PA)PB = PB − PA. The proof follows along the lines of
(30) replacing PA with PB −PA.

Regarding computations: The computation is done via the QR decomposition of the concate-
nated matrix D = (A|B). Let rA and rB the ranks of A and B. The QR-decomposition
D = QR provides via pivoting a matrix Q such that for the matrix Q1 of the first rA columns
of Q one has C(Q1) = C(A). The matrix Q2 of the following rB − rA columns has C(Q2)
which is the orthogonal complement of C(A) in C(B). Then Q2Q

>
2 is the orthogonal projec-

tion onto this complement. With the note above we have a solution L = Q2Q
>
2 B. Because

the nullspaces of Q2Q
>
2 and Q>2 are the same a L with row-rank equal to its rank is obtained

by Q>2 B.
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