Estimating functions and inhomogeneous point processes

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

February 7, 2017

Outline

Introduction to:

- estimating equations and quasi-likelihood
- inhomogeneous point processes
- estimating functions for inhomogeneous point processes

Examples of estimating equations

Least squares (non-linear) : suppose Y_i has mean $\mu_i(\beta)$.

Minimizing

$$\sum_{i=1}^n [Y_i - \mu_i(\beta)]^2$$

leads to estimating equation (first derivative)

$$D^{\mathsf{T}}[Y - \mu(\beta)] = 0$$

where (sensitivity)

$$D = \frac{\mathrm{d}\mu}{\mathrm{d}\beta^T} = \left[\mathrm{d}\mu_i/\mathrm{d}\beta_j\right]_{ij}$$

Moment estimation: suppose we know $\mathbb{E}_{\theta}g(Y)$ for some function g.

Then we estimate θ by solving

$$g(y) = \mathbb{E}_{\theta}g(Y) \Leftrightarrow \mathbb{E}_{\theta}g(Y) - g(y) = 0$$

I.e. choose θ so that empirical value of g matches its expected value.

Example:

$$\mathbb{E}SSE = \mathbb{E}\sum_{i=1}^{n}(Y_{i}-\bar{Y}_{i})^{2} = (n-1)\sigma^{2}$$

Maximum likelihood estimation: suppose $f(y; \theta)$ is likelihood of observation y. Then maximum likelihood estimate is

$$\hat{\theta} = \operatorname*{argmax}_{\theta} f(y; \theta) = \operatorname*{argmax}_{\theta} \log f(y; \theta)$$

Typically we find $\hat{\theta}$ by differentiation and equating to zero:

$$s(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta} \log f(y; \theta) = 0$$

Exponential family:

$$f(y; \theta) = c(\theta)h(y) \exp[t(y) \cdot \theta]$$

Then score is

$$s(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta} \log f(y; \theta) = t(y) - \mathbb{E}_{\theta} t(Y)$$

Thus (moment estimation)

$$s(\theta) = 0 \Leftrightarrow t(y) = \mathbb{E}_{\theta} t(Y)$$

In general: estimating function e is function of data Y and unknown parameter θ . Estimate $\hat{\theta}$ is given as solution of estimating equation

$$e(\theta) = 0$$

(typically we suppress data Y from the notation).

Hopefully unique solution!

Optimality (one-dimensional case)

Let θ^* denote true value of θ . We want:

- 1. $e(\theta^*)$ close to zero
- 2. $e(\theta)$ differs much from zero when θ differs from θ^*
- 1. OK if $e(\theta)$ unbiased estimating function

$$\mathbb{E}_{\theta^*}e(\theta^*)=0$$

and $Var_{\theta^*}e(\theta^*)$ small.

2. OK if large sensitivity $e'(\theta^*)$ large

This leads to criteria $(\mathbb{E}_{\theta^*}e'(\theta^*))^2/\mathbb{V}\mathrm{ar}_{\theta^*}e(\theta^*)$ which should be as big as possible. Equivalently, $\mathbb{V}\mathrm{ar}_{\theta^*}e(\theta^*)/(\mathbb{E}_{\theta^*}e'(\theta^*))^2$ should be as small as possible.

In the multidimensional case we consider

$$I = S(\theta^*)^\mathsf{T} \mathbb{V} \mathrm{ar}_{\theta^*} e(\theta^*)^{-1} S(\theta^*)$$

where *S* is *sensitivity matrix*

$$S(\theta) = -\mathbb{E}\left[\frac{\mathrm{d}}{\mathrm{d}\theta^\mathsf{T}}e(\theta)\right]$$

We then say that e_1 is better than e_2 if

$$I_1 - I_2$$

is positive semi-definite.

e is optimal within a class of estimating functions if it is better than any other estimating function in the class.

I is called the Godambe information.

Another view on optimality

By linear approximation (asymptotically) (assuming S^{-1} exists)

$$0 = e(\hat{\theta}) \approx e(\theta^*) - S(\hat{\theta} - \theta^*) \Leftrightarrow (\hat{\theta} - \theta^*) \approx S^{-1}e(\theta^*)$$

Thus

$$\mathbb{V}\mathrm{ar}\hat{\boldsymbol{\theta}} \approx S^{-1}\boldsymbol{\Sigma}(S^{-1})^\mathsf{T} = \boldsymbol{I}^{-1} \quad \boldsymbol{\Sigma} = \mathbb{V}\mathrm{ar}\boldsymbol{e}(\boldsymbol{\theta})$$

Hence we say e_1 is better than e_2 if

$$\mathbb{V}\mathrm{ar}\hat{\theta}_{2} - \mathbb{V}\mathrm{ar}\hat{\theta}_{1} = S_{2}^{-1}\Sigma_{2}(S_{2}^{-1})^{\mathsf{T}} - S_{1}^{-1}\Sigma_{1}(S_{1}^{-1})^{\mathsf{T}}$$

is positive definite.

Same as before since

$$S_2^{-1}\Sigma_2(S_2^{-1})^{\mathsf{T}} - S_1^{-1}\Sigma_1(S_1^{-1})^{\mathsf{T}} = I_2^{-1} - I_1^{-1}$$

which is positive semi-definite if $l_1 - l_2$ is positive semi-definite (see useful matrix result on last slide).

Case of MLE

For likehood score (under suitable regularity conditions¹)

$$Var_{\theta}s(\theta) = S$$

so that Godambe information

$$I = S$$

is equal to the Fisher information.

$$\mathbb{V}$$
ar $\hat{\theta} \approx S^{-1}$

Estimating functions and the likelihood score

The following result holds for an unbiased estimating function (under suitable regularity conditions) (one-dimensional case for ease of notation):

$$\mathbb{E}s(\theta)e(\theta) = \mathbb{C}ov[s(\theta), e(\theta)] = S$$

This implies

$$\operatorname{\mathbb{C}orr}[s(\theta), e(\theta)]^2 = \frac{S^2}{\operatorname{\mathbb{V}ars}(\theta)\operatorname{\mathbb{V}are}(\theta)} = \frac{I}{\operatorname{\mathbb{V}ars}(\theta)}$$

That is the optimal estimating function has maximal correlation with the likelihood score.

Corollary: the likelihood score is optimal among all estimating functions.

Useful condition for optimality (Theorem 2.1, Heyde, 1997)

Consider a class \mathcal{E} of estimating functions. e^o is optimal within \mathcal{E} if for some constant invertible matrix K,

$$\Sigma_{ee^o} = \mathbb{C}\text{ov}[e, e^o] = S_e K \tag{1}$$

for all $e \in \mathcal{E}$.

If ${\mathcal E}$ is convex then the converse is true too.

Note: if e^o is optimal then $(K^{-1})^T e^o$ optimal too. Hence we can let K=I without loss of generality. Then (1) implies $\mathbb{V}\mathrm{ar} e^0=S_{e^o}$ and we obtain properties

$$I_{e^o} = S_{e^o} \quad \mathbb{V}\mathrm{ar}\hat{\theta}^o pprox S_{e^o}^{-1}$$

as for the likelihood score.

Proof of if part:

Define standardized estimating function $e_s = S_e^T \Sigma_e^{-1} e$.

Then $\Sigma_{e_s} = \mathbb{V}\mathrm{ar} e_s = I_e$. Thus $I_{e^o} - I_e = \mathbb{V}\mathrm{ar} e_s^o - \mathbb{V}\mathrm{ar} e_s$.

Moreover (1) is equivalent to $\Sigma_{e_se_s^o}=\Sigma_{e_s^oe_s}=\Sigma_{e_s}$. Then

$$\mathbb{V}\mathrm{ar}[e^o_s - e_s] = \Sigma_{e^o_s} - \Sigma_{e_s}$$

which proves the result since the LHS is positive semi-definite.

Exercises

- show results on slide 'Estimating functions and the likelihood score' (hint: use the rule for differentiation of a product to show the first result)
- 2. (Quasi-likelihood) Suppose $Y = (Y_1, ..., Y_n)$ has mean vector $\mu(\beta)$ and (known) covariance matrix V.

Consider the class of estimating functions

$$A[Y - \mu(\beta)]$$

where $A \ q \times n$ (all linear combinations of residual vector). Show that the optimal choice is $A = D^{\mathsf{T}} V^{-1}$.

What is the Godambe information matrix?

Now: inhomogeneous point processes.

Data example: tropical rain forest trees

Observation window $W = [0, 1000] \times [0, 500]$

Sources of variation: elevation and gradient covariates *and* possible clustering/aggregation due to unobserved covariates and/or seed dispersal.

Spatial point process

Spatial point process: random collection of points

(finite number of points in bounded sets)

Fundamental characteristic of point process: mean of counts $N(A) = \#(\mathbf{X} \cap A)$.

Fundamental characteristic of point process: mean of counts $N(A) = \#(\mathbf{X} \cap A)$.

Intensity measure μ :

$$\mu(A) = \mathbb{E}N(A), \quad A \subseteq \mathbb{R}^2$$

Fundamental characteristic of point process: mean of counts $N(A) = \#(\mathbf{X} \cap A)$.

Intensity measure μ :

$$\mu(A) = \mathbb{E}N(A), \quad A \subseteq \mathbb{R}^2$$

In practice often given in terms of intensity function

$$\mu(A) = \int_A \rho(u) \mathrm{d}u$$

Fundamental characteristic of point process: mean of counts $N(A) = \#(\mathbf{X} \cap A)$.

Intensity measure μ :

$$\mu(A) = \mathbb{E}N(A), \quad A \subseteq \mathbb{R}^2$$

In practice often given in terms of intensity function

$$\mu(A) = \int_A \rho(u) \mathrm{d}u$$

Infinitesimal interpretation: N(A) binary variable (presence or absence of point in A) when A very small. Hence

$$\rho(u)|A| \approx \mathbb{E}N(A) \approx P(X \text{ has a point in A})$$

Covariance of counts and pair correlation function

Pair correlation function

$$\mathbb{E}\sum_{u,v\in\mathbf{X}}^{\neq}\mathbf{1}[u\in A,\ v\in B]=\int_{A}\int_{B}\rho(u)\rho(v)g(u,v)\,\mathrm{d}u\,\mathrm{d}v$$

Covariance between counts:

$$\mathbb{C}\mathrm{ov}[N(A), N(B)] = \int_{A \cap B} \rho(u) \mathrm{d}u + \int_{A} \int_{B} \rho(u) \rho(v) (g(u, v) - 1) \mathrm{d}u \mathrm{d}v$$

Pair correlation g(u, v) > 1 implies positive correlation.

Campbell formulae

From definitions of intensity and pair correlation function we obtain the Campbell formulae:

$$\mathbb{E}\sum_{u\in\mathbf{X}}h(u)=\int h(u)\rho(u)\mathrm{d}u$$

$$\mathbb{E}\sum_{u,v\in\mathbf{X}}^{\neq}h(u,v)=\iint h(u,v)\rho(u)\rho(v)g(u,v)\mathrm{d}u\mathrm{d}v$$

The Poisson process

Assume μ locally finite measure on \mathbb{R}^2 with density ρ .

The Poisson process

Assume μ locally finite measure on \mathbb{R}^2 with density ρ .

X is a Poisson process with intensity measure μ if for any bounded region B with $\mu(B) > 0$:

- 1. $N(B) \sim \mathsf{Poisson}(\mu(B))$
- 2. Given N(B), points in $\mathbf{X} \cap B$ i.i.d. with density $\propto \rho(u)$, $u \in B$

Homogeneous: $\rho = 150/0.7$ Inhomogeneous: $\rho(x, y) \propto e^{-10.6y}$

Independence properties of Poisson process

- 1. if A and B are disjoint then N(A) and N(B) independent
- 2. this implies $\mathbb{C}ov[N(A), N(B)] = 0$ if $A \cap B = \emptyset$
- 3. which in turn implies g(u, v) = 1 for a Poisson process

Inhomogeneous Poisson process with covariates

Log linear intensity function

$$\rho_{\beta}(u) = \exp(z(u)\beta^{\mathsf{T}}), \quad z(u) = (1, z_{\mathsf{elev}}(u), z_{\mathsf{grad}}(u))$$

Inhomogeneous Poisson process with covariates

Log linear intensity function

$$\rho_{\beta}(u) = \exp(z(u)\beta^{\mathsf{T}}), \quad z(u) = (1, z_{\mathsf{elev}}(u), z_{\mathsf{grad}}(u))$$

Consider indicators $N_i = \mathbf{1}[\mathbf{X} \cap C_i \neq \emptyset]$ of occurrence of points in disjoint C_i ($W = \cup C_i$) where $P(N_i = 1) \approx \rho_{\beta}(u_i)|C_i|$, $u_i \in C_i$

Inhomogeneous Poisson process with covariates

Log linear intensity function

$$\rho_{\beta}(u) = \exp(z(u)\beta^{\mathsf{T}}), \quad z(u) = (1, z_{\mathsf{elev}}(u), z_{\mathsf{grad}}(u))$$

Consider indicators $N_i = \mathbf{1}[\mathbf{X} \cap C_i \neq \emptyset]$ of occurrence of points in disjoint C_i ($W = \cup C_i$) where $P(N_i = 1) \approx \rho_{\beta}(u_i)|C_i|$, $u_i \in C_i$

Limit $(|C_i| \rightarrow 0)$ of likelihood ratios

$$\prod_{i=1}^{n} \frac{(\rho_{\beta}(u_{i})|C_{i}|)^{N_{i}}(1-\rho_{\beta}(u_{i})|C_{i}|)^{1-N_{i}}}{(1|C_{i}|)^{N_{i}}(1-1|C_{i}|)^{1-N_{i}}} \equiv \prod_{i=1}^{n} \frac{\rho_{\beta}(u_{i})^{N_{i}}(1-\rho_{\beta}(u_{i})|C_{i}|)^{1-N_{i}}}{(1-1|C_{i}|)^{1-N_{i}}}$$

is

$$L(\beta) = \left[\prod_{u \in \mathbf{X} \cap W} \rho_{\beta}(u)\right] \exp(|W| - \int_{W} \rho_{\beta}(u) du)$$

This is the Poisson likelihood function.

Maximum likelihood parameter estimate

Score function:

$$s(\beta) = \frac{\mathrm{d}}{\mathrm{d}\beta} \log L(\beta) = \sum_{u \in \mathbf{X} \cap W} z(u) - \int_{W} z(u) \rho_{\beta}(u) \mathrm{d}u$$

Maximum likelihood estimate $\hat{\beta}$ maximizes $L(\beta)$. I.e. solution of

$$s(\beta) = 0.$$

Note by Campbell $s(\beta)$ unbiased:

$$\mathbb{E}s(\beta)=0.$$

Observed information ($p \times p$ matrix):

$$I(\beta) = -\frac{\mathrm{d}}{\mathrm{d}\beta^{\mathsf{T}}} \mathsf{s}(\beta) = \int_{\mathcal{U}} \mathsf{z}(u)^{\mathsf{T}} \mathsf{z}(u) \rho_{\beta}(u) \mathrm{d}u$$

Unique maximum/root if $I(\beta)$ positive definite.

By Campbell formulae

$$\mathbb{V}\mathrm{ar}u(\beta) = I(\beta)$$

and according to standard asymptotic results for MLE (β^* 'true' value)

$$\hat{\beta} \approx N(\beta^*, I(\beta^*)^{-1})$$

'n' (number of observations) tends to infinity?

Possibilities: increasing observation window or increasing intensity

Problem: Poisson process does not fit rain forest data due to excess clustering (e.g. seed dispersal)!

Hence variance of $\hat{\beta}$ is underestimated by $I(\beta^*)^{-1}$ when a Poisson process is assumed.

Cluster process: Inhomogeneous Thomas process

Parents stationary Poisson point process intensity $\boldsymbol{\kappa}$

Poisson(α) number of offspring distributed around parents according to bivariate Gaussian density with std. dev. ω

Inhomogeneity: offspring survive according to probability

$$p(u) \propto \exp(z(u)\beta^{\mathsf{T}})$$

depending on covariates (independent thinning).

Intensity and pair correlation function for Thomas

$$\rho_{\beta}(u) = \exp[z(u)\beta^{\mathsf{T}}]$$

and

$$g(u, v) = 1 + (4\pi\omega^2)^{-d/2} \exp[-\{r/(2\omega)\}^2]/\kappa$$

Note g(u, v) > 1!

Parameter estimation: regression parameters

Likelihood function for inhomogeneous Thomas process is complicated.

Can instead use Poisson score $s(\beta)$ as an estimating function (Poisson likelihood now composite likelihood).

I.e. estimate $\hat{\beta}$ again solution of

$$s(\beta) = 0$$

But now larger variance of $s(\beta)$ due to positive correlation!

Exercises

- 1. Show that $s(\beta)$ is an unbiased estimating function (both in the Poisson case and for the inhom. Thomas).
- 2. For a Poisson process, show that $\mathbb{V}ars(\beta) = \mathbb{V}ar \sum_{u \in \mathbf{X} \cap W} z(u) = I(\beta)$.
- 3. Compute the Godambe information for the estimating function $s(\beta)$ when **X** is a general point process with pair correlation function $g \neq 1$ (hint: use second-order Campbell formula). Compare with the case of a Poisson process (g = 1).

Quasi-likelihood for spatial point processes

Quasi-likelihood based on data vector Y was optimal linear transformation

$$D^{\mathsf{T}}V^{-1}R$$

of residual vector

$$R = Y - \mu(\beta)$$

Can we adapt quasi-likelihood to spatial point processes ?

What is residual in this case ?

Residual measure

For point process **X** and $A \subset \mathbb{R}^2$ residual measure is

$$R(A) = N(A) - \mathbb{E}N(A) = \sum_{u \in \mathbf{X}} 1[u \in A] - \int 1[u \in A]\rho(u; \beta)du$$

(N(A) number of points in A).

Residual measure

For point process **X** and $A \subset \mathbb{R}^2$ residual measure is

$$R(A) = N(A) - \mathbb{E}N(A) = \sum_{u \in \mathbf{X}} 1[u \in A] - \int 1[u \in A]\rho(u; \beta)du$$

(N(A) number of points in A).

In analogy with quasi-likelihood look for optimal linear transformation of the residual measure

$$e_f(\beta) = \int f(u; \beta) R(du) = \sum_{u \in \mathbf{X}} f(u; \beta) - \int f(u; \beta) \rho(u; \beta) du$$

where $f: \mathbb{R}^2 \to \mathbb{R}^p$ real vector-valued "weight" function.

Estimate $\hat{\beta}_f$ solves estimating equation

$$e_f(\beta) = 0$$

Remember: ϕ is optimal if

$$\mathbb{C}$$
ov $[e_{\phi}, e_f] = S_f$

for all f.

Remember: ϕ is optimal if

$$\mathbb{C}$$
ov $[e_{\phi}, e_f] = S_f$

for all f.

Using the Campbell formulae one can show that this is satisfied if ϕ solves following integral equation:

$$\phi(u;\beta) + \int_{W} t(u,v)\phi(v;\beta)dv = \frac{d}{d\beta}\log\rho(u;\beta) \quad u \in W$$

where integral operator kernel is

$$t(u, v) = \rho(v; \beta)[g(u, v) - 1]$$

Poisson process case

Poisson process case: g(u, v) = 1 so integral equation simplifies:

$$\phi(u) + \int_{W} \rho(v;\beta)[g(u,v) - 1]\phi(v)dv = \frac{d}{d\beta}\log\rho(u;\beta) \Rightarrow$$
$$\phi(u) = \frac{d}{d\beta}\log\rho(u;\beta) = \frac{\rho'(u;\beta)}{\rho(u;\beta)}$$

Hence resulting estimating function is

$$\sum_{u \in \mathbf{X} \cap W} \frac{\rho'(u;\beta)}{\rho(u;\beta)} - \int_{W} \rho'(u;\beta) du$$

which coincides with score of Poisson process log likelihood.

Quasi-likelihood

Integral equation approximated using Riemann sum dividing W into cells C_i with representative points u_i .

Resulting estimating function is quasi-likelihood score

$$D^{\mathsf{T}}V^{-1}[Y-\mu]$$

based on

$$Y = (Y_1, \ldots, Y_m)^T$$
, $Y_i = 1[X \text{ has point in } C_i].$

 μ mean of Y:

$$\mu_i = \mathbb{E}Y_i = \rho(u_i; \beta)|C_i| \text{ and } D = \left[\mathrm{d}\mu(u_i)/\mathrm{d}\beta_i\right]_{ij}$$

V covariance of Y

$$V_{ij} = \mathbb{C}\text{ov}[Y_i, Y_j] = \mu_i \mathbb{1}[i = j] + \mu_i \mu_j [g(u_i, u_j) - 1]$$

Useful matrix result

Assume A and B invertible.

$$B^{-1} - A^{-1} = A^{-1}(A - B)B^{-1}AA^{-1} = A^{-1}[(A - B)B^{-1}(B + A - B)]A^{-1}$$
$$= A^{-1}[A - B + (A - B)B^{-1}(A - B)]A^{-1}$$

Hence if A - B is positive definite so is $B^{-1} - A^{-1}$.