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Outline

Introduction to:
> estimating equations and quasi-likelihood
» inhomogeneous point processes

» estimating functions for inhomogeneous point processes
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Examples of estimating equations

Least squares (non-linear) : suppose Y; has mean pu;(3).

Minimizing
n

> 1Y — wi(B)P

i=1

leads to estimating equation (first derivative)

DT[Y — p(B)] = 0
where (sensitivity)

dp

D= BT [dpi/dB)]
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Moment estimation: suppose we know Egg(Y’) for some function
g.

Then we estimate 6 by solving

g(y) =Eog(Y) < Eog(Y) —g(y) =0
l.e. choose 6 so that empirical value of g matches its expected
value.
Example:

ESSE=RE) (Yi—Y)*=(n-1)0
i=1
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Maximum likelihood estimation: suppose f(y; ) is likelihood of
observation y. Then maximum likelihood estimate is

0 = argmax f(y; 0) = argmax log f(y; 0)
9 [%

Typically we find 6 by differentiation and equating to zero:

s(6) = <5 log £(y:0) = 0

Exponential family:
f(y:0) = c(0)h(y) exp[t(y) - 0]

Then score is

s(0) = % log f(y; 0) = t(y) — Egt(Y)

Thus (moment estimation)

5(6) = 0 t(y) = Eqt(Y)



In general: estimating function e is function of data Y and
unknown parameter 6. Estimate @ is given as solution of
estimating equation

e(d)=0

(typically we suppress data Y from the notation).

Hopefully unique solution !
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Optimality (one-dimensional case)

Let 6* denote true value of §. We want:
1. e(6*) close to zero
2. e(0) differs much from zero when 6 differs from 6*

1. OK if e(#) unbiased estimating function
Eg-e(6*) = 0

and Varg-e(6*) small.

2. OK if large sensitivity €'(0*) large

This leads to criteria (Eg-€/(6%))? /Varg-e(6*) which should be as
big as possible. Equivalently, Varg-e(0*)/ (Eg-€'(6*))? should be
as small as possible.
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In the multidimensional case we consider
I = S(6%)"Varg-e(6*)715(6%)

where S is sensitivity matrix

S(0) = ~E[re(0)

We then say that e; is better than e if
h—h
is positive semi-definite.

e is optimal within a class of estimating functions if it is better
than any other estimating function in the class.

| is called the Godambe information.
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Another view on optimality

By linear approximation (asymptotically) (assuming S~1 exists)

0=-e(d) ~ e(6*)— SO —0") = (0 —0*) ~ S~Le(0")

Thus
Varf ~ S7I(S™HT =171 ¥ = Vare(9)

Hence we say e; is better than e, if
Varéz - Varél == 52_122(52_1)1— - Sl_lzl(Sl_l)T

is positive definite.

Same as before since
S (ST =SS ) =t -0t

which is positive semi-definite if ; — / is positive semi-definite
(see useful matrix result on last slide).

44



Case of MLE

For likehood score (under suitable regularity conditions®)
Vargs(8) = S
so that Godambe information
=S5

is equal to the Fisher information.

Varf ~ S~ 1

!E.g. interchange of differentiation and integration allowed
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Estimating functions and the likelihood score

The following result holds for an unbiased estimating function
(under suitable regularity conditions) (one-dimensional case for
ease of notation):

Es(0)e(0) = Cov[s(0),e(0)] = S

This implies

s? !
Corrls(0). eO) = oo Tare(@) — Vars(@)

That is the optimal estimating function has maximal correlation
with the likelihood score.

Corollary: the likelihood score is optimal among all estimating
functions.
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Useful condition for optimality (Theorem 2.1, Heyde, 1997)

Consider a class £ of estimating functions. e® is optimal within £
if for some constant invertible matrix K,

Y eeo = Covle, €°] = ScK (1)
foralle € £.

If £ is convex then the converse is true too.

Note: if e° is optimal then (K~!)Te° optimal too. Hence we can
let K = | without loss of generality. Then (1) implies Vare® = S.o
and we obtain properties

Ieo = Seo Varéo ~ 5;;1

as for the likelihood score.
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Proof of if part:
Define standardized estimating function e; = ST¥ - 1e.
Then X, = Vare; = l.. Thus leo — lo = Varel — Vares.

Moreover (1) is equivalent to Y ¢ o = Yoo, = XLe,. Then

Var[e; — es] = Lo — X,

which proves the result since the LHS is positive semi-definite.
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Exercises

1. show results on slide ‘Estimating functions and the likelihood
score’ (hint: use the rule for differentiation of a product to
show the first result)

2. (Quasi-likelihood) Suppose Y = (Yi,..., Y,) has mean vector
w(B) and (known) covariance matrix V.

Consider the class of estimating functions

ALY — u(B)]

where A g x n (all linear combinations of residual vector).
Show that the optimal choice is A= DTV 1.

What is the Godambe information matrix ?
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Now: inhomogeneous point processes.
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Data example: tropical rain forest trees
Observation window W = [0,1000] x [0, 500]

Beilschmiedia
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Sources of variation: elevation and gradient covariates and possible
clustering/aggregation due to unobserved covariates and/or seed
dispersal.



Spatial point process

Spatial point process: random
collection of points

(finite number of points in
bounded sets)
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X N A).
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X N A).

Intensity measure p:

uw(A) = EN(A), ACR?
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X N A).

Intensity measure p:
u(A) = EN(A), ACR?

In practice often given in terms of intensity function

H(A) = /A p(u)du
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X N A).

Intensity measure p:
u(A) = EN(A), ACR?

In practice often given in terms of intensity function

H(A) = /A p(u)du

Infinitesimal interpretation: N(A) binary variable (presence or
absence of point in A) when A very small. Hence

p(u)|Al = EN(A) ~ P(X has a point in A)
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Covariance of counts and pair correlation function

Pair correlation function

#
E Z llue A, veB]= /A/Bp(u)p(v) dudv

u,veX

Covariance between counts:

Cov[N(A), N(B)] = /A o /A /B p(0)p(V) )dudv

Pair correlation g(u, v) > 1 implies positive correlation.

22 /44



Campbell formulae

From definitions of intensity and pair correlation function we
obtain the Campbell formulae:

EY h() = /h(u)p(u)du

ueX

E Z h(u,v) // u, v)p(u)p(v)g(u, v)dudv

u,veX
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The Poisson process

Assume 1 locally finite measure on R? with density p.
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The Poisson process

Assume 1 locally finite measure on R? with density p.

X is a Poisson process with intensity measure p if for any bounded
region B with u(B) > 0:

1. N(B) ~ Poisson(u(B))
2. Given N(B), points in X N B i.i.d. with density « p(u), u e B

B =[0,1] x [0,0.7]:

Homogeneous: p = 150/0.7 Inhomogeneous: p(x,y) o< e~10:6¥
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Independence properties of Poisson process

1. if A and B are disjoint then N(A) and N(B) independent
2. - this implies Cov[N(A),N(B)]=0if ANB =10

3. - which in turn implies g(u,v) = 1 for a Poisson process
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Inhomogeneous Poisson process with covariates

Log linear intensity function

,Oﬁ(U) = exp(Z(U)IBT), Z(U) = (17Ze|ev(u)7zgrad(u))
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Inhomogeneous Poisson process with covariates

Log linear intensity function

pﬁ(u) = eXp(Z(U)IBT), Z(U) = (17Ze|ev(u)7zgrad(u))

Consider indicators N; = 1[X N C; # )] of occurrence of points in
disjoint C; (W = UG;) where P(N; = 1) = pg(u;)|Ci|, ui € C;
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Inhomogeneous Poisson process with covariates

Log linear intensity function

pﬂ(u) = exp(Z(U)IBT), Z(U) = (17Ze|ev(u)7zgrad(u))

Consider indicators N; = 1[X N C; # )] of occurrence of points in
disjoint C; (W = UG;) where P(N; = 1) = pg(u;)|Ci|, ui € C;

Limit (|Gj| — 0) of likelihood ratios

ﬁ (ps(u)|GNi(1 = pp(up)l GNP {1 p(ui)Mi(1 — ps(ui)| Gi|)E N

Sooaahva-aysNe o T (I—1G)-N

o) =1 IT st ew(WI= [ pstwo)

ueXNW
This is the Poisson likelihood function.
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Maximum likelihood parameter estimate
Score function:

s(p) = 4 log L(B) = Z z(u) — /W z(u)ps(u)du

d'B ueXNw

Maximum likelihood estimate 3 maximizes L(3). l.e. solution of

5(8) = 0.
Note by Campbell s(/3) unbiased:
Es(B) = 0.

Observed information (p x p matrix):

109) = ~35e5(0) = | 2" 2(ups(u)du

Unique maximum/root if /() positive definite,
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By Campbell formulae

Varu(B) = 1()
and according to standard asymptotic results for MLE (8* ‘true’
value)
B~ N5
‘n" (number of observations) tends to infinity ?

Possibilities: increasing observation window or increasing intensity

Problem: Poisson process does not fit rain forest data due to
excess clustering (e.g. seed dispersal) !

Hence variance of B is underestimated by /(3*)~! when a Poisson
process is assumed.
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Cluster process: Inhomogeneous Thomas process
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Parents stationary Poisson point process

intensity x

Poisson(a) number of offspring

distributed around parents according to
bivariate Gaussian density with std. dev.

w

Inhomogeneity: offspring survive

according

depending on covariates (independent

thinning).

to probability

p(u) oc exp(z(u)BT)
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Intensity and pair correlation function for Thomas

pp(u) = explz(u)3T]
and
g(u,v) =1+ (4mw?®) ™% exp[—{r/(2w)}*]/x

Note g(u,v) > 1!
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Parameter estimation: regression parameters

Likelihood function for inhomogeneous Thomas process is
complicated.

Can instead use Poisson score s(/3) as an estimating function
(Poisson likelihood now composite likelihood).

l.e. estimate /3 again solution of

s(8) =0

But now larger variance of s(3) due to positive correlation !
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Exercises

1. Show that s(3) is an unbiased estimating function (both in
the Poisson case and for the inhom. Thomas).

2. For a Poisson process, show that
Vars(B8) = Var _ ,exqw z(u) = 1(8).

3. Compute the Godambe information for the estimating function
s(8) when X is a general point process with pair correlation
function g # 1 (hint: use second-order Campbell formula).
Compare with the case of a Poisson process (g = 1).
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Quasi-likelihood for spatial point processes

Quasi-likelihood based on data vector Y was optimal linear

transformation
DTV7IR

of residual vector
R=Y —u(p)

Can we adapt quasi-likelihood to spatial point processes ?

What is residual in this case ?
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Residual measure
For point process X and A C R? residual measure is

R(A) = N(A) — EN(A) = 3" 1lu e A] - / 1[u € Alp(u: 8)du

ueX

(N(A) number of points in A).
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Residual measure
For point process X and A C R? residual measure is

R(A) = N(A) —EN(A) = > 1[u € Al - /l[u € Alp(u; B)du
ueX
(N(A) number of points in A).

In analogy with quasi-likelihood look for optimal linear
transformation of the residual measure

er(9) = [ i RMD = Y- F(wi 8) ~ [ F(ui B)p(us )

ueX

where f : R? — RP real vector-valued “weight” function.

Estimate ff solves estimating equation

ef(,B) =0
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Remember: ¢ is optimal if
Covley, er] = S¢

for all f.
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Remember: ¢ is optimal if
Covley, er] = S¢
for all f.

Using the Campbell formulae one can show that this is satisfied if
¢ solves following integral equation:

o)+ [t v)olvi B)dv = 5 log plui 5) we W
where integral operator kernel is

t(u,v) = p(v: B)lg(u, v) — 1]
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Poisson process case

Poisson process case: g(u,v) = 1 so integral equation simplifies

o(u) + /W o(vi B)e(u,v) — 1Jo(v)dv = % log p(u; ) =

o) = L log p(u; ) = ZL25)

dg p(u; B)

Hence resulting estimating function is

> pl(u.;g)) —/WP/(U;ﬂ)du

ueEXNW p(u,

which coincides with score of Poisson process log likelihood.

41 /44



Quasi-likelihood

Integral equation approximated using
Riemann sum dividing W into cells C;
with representative points u;.

Resulting estimating function is quasi-likelihood score
DTVHY — 4]
based on

Y =(Ye,...,Ym)", Yi=1[X has point in G].
1 mean of Y:
pi =EY; = p(ui; 8)|C| and D = [dp(u;)/dB;];

V covariance of Y

Vj = Cov[Y;, Yj] = pdli = j] + pinjl —1]
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Useful matrix result

Assume A and B invertible.
B 1Al =AY A-B)B'AA™ = A"} [(A-B)B"}(B+A-B)|A!
=AY A-B+(A-B)B 1 (A-B)A!

Hence if A — B is positive definite so is B~1 — A™1.
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