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Outline for today

I linear models

I least squares estimation

I orthogonal projections

I estimation of error variance
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Linear regression

Model for random responses Yi given fixed xi :

Yi = a + bxi + εi (1)

a, b: intercept and slope.

εi : zero-mean random noise/measurement error/model error.

Matrix form:
Y = Xβ + ε

where β = (a, b)T and

Y =


Y1

Y2
...
Yn

 X =


1 x1
1 x2
...
1 xn

 ε =


ε1
ε2
...
εn


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General linear model

General linear model:
Y = Xβ + ε

where Y ∈ Rn, X : n × p design matrix, β ∈ Rp: regression
parameter, ε ∈ Rn: zero-mean noise.

Objective: estimate unknown parameter β and quantify noise
variation based on observation y of Y .

NB: µ = EY can be any vector in L = colX (column space of X ).

Instead of specifying the design matrix we may just specify that
µ ∈ L for some linear subspace L. Then we can use any design
matrix X for which colX = L (that is the columns of X spans L).

Note columns need not be linear independent but if they are then
one-to-one correspondence between µ and β !
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Example (linear regression): let x̄ =
∑

i xi/n. Then

X =


1 x1
1 x2
...
1 xn

 and X̃ =


1 x1 − x̄
1 x2 − x̄
...
1 xn − x̄


generate the same linear subspace.

However, the columns of X̃ form an orthogonal basis.
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Least squares

Suppose linear model is specified by µ ∈ L. Least squares estimate
of µ is

µ̂ = argmin
µ∈L

‖Y − µ‖2 = argmin
µ∈L

n∑
i=1

(Yi − µi )2

If L = colX where X has full rank this is equivalent to finding

β̂ = argmin
β∈Rp

‖Y − Xβ‖2

(unique minimum not available if X not full rank)

Estimation handled easily via orthogonal projections.
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Orthogonal decomposition

Suppose L subspace of Rn. Let
L⊥ = {v ∈ Rn|v • w = 0 for all w ∈ L}.

Orthogonal decomposition: each x ∈ Rn has a unique
decomposition

x = u + v

where u ∈ L and v ∈ L⊥.

Orthogonal projection: u and v above are the orthogonal
projections pL(x) and pL⊥(x) of x on respectively L and L⊥.

Pythagoras:
‖x‖2 = ‖u‖2 + ‖v‖2
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Least squares and orthogonal projections

Orthogonal decomposition of data vector Y :

Y = pL(Y ) + R

where pL(Y ) ∈ L and R = Y − pL(Y ) ∈ L⊥.

By Pythagoras:

‖Y −µ‖2 = ‖(Y −pL(Y ))+(pL(Y )−µ)‖2 = ‖R‖2 +‖pL(Y )−µ‖2

It thus follows that µ̂ = pL(Y )

We call R the residual
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Orthogonal projections

I the orthogonal projection pL : Rn → L on L is a linear
mapping. It is thus given by a unique matrix-transformation
pL(x) = Px where P is an n × n matrix.

I the projection matrix P is symmetric (PT = P) and
idempotent (P2 = P)

I conversely, if a matrix Q is symmetric, idempotent and
L = colQ then Q is the matrix of the orthogonal projection on
L.

I if L = colX and X full rank then P = X (XTX )−1XT

(whereby µ̂ = X (XTX )−1XTY and β̂ = (XTX )−1XTY )

Note: Eµ̂ = µ and Eβ̂ = β i.e. µ̂ and β̂ are unbiased.
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Implementation in R

Suppose L is spanned by vectors xi and y is the observed response.

The following R call (p = 3) fits the linear model:

lm(y~x1+x2+x3)

Useful methods: coef, resid, summary.

Note: if e.g. x1 is a categorical variable/factor we typically want
one intercept for each category/level of the factor. Then we use:

lm(y~factor(x1)+x2+x3)
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Let Z = (Z1, . . . ,Zn)T where the Zi are random variables with
finite variances.

Then the variance-covariance matrix of Z is the n× n matrix VarZ
whose ijth entry is Cov(Zi ,Z,j).

VarZ is symmetric, positive semi-definite and the diagonal entries
are given by the variances of the Zi .
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Variance of β̂

Suppose the errors ε1, . . . , εn are uncorrelated with common
variance σ2. I.e.

Varε = σ2I

Then

Varβ̂ = Var((XTX )−1XTY )

= (XTX )−1XTVarε[(XTX )−1XT]T

= σ2(XTX )−1

One can show that β̂ is BLUE (best linear unbiased estimate) - i.e.
it attains minimum variance among all linear unbiased estimates
(we will return to this in fourth lecture).
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Estimation of σ2

Suppose that Varε = σ2I .

Note that
R = (Y − µ̂) = (I − P)Y = (I − P)ε

Hence VarR = σ2(I − P). Moreover,

E‖R‖2 = σ2trace(I − P) = σ2(n − p)

Thus
σ̂2 = ‖R‖2/(n − p)

is an unbiased estimate of σ2.
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Exercises

1. (slide 5) Show that the columns in X̃ are orthogonal. Show
that colX = colX̃ .

2. consider the model yij = α + αi + εij , i = 1, . . . ,m,
j = 1, . . . , k.
2.1 is this a linear model ?
2.2 if so, then write down the design matrix.
2.3 does the design matrix have full rank ?
2.4 in case of no to the previous question, can you find an

alternative design matrix of full rank ?

3. show that µ and β are in one-to-one correspondence when X
has full rank (hint: (XTX )−1XT is a left inverse to X ).

4. (Linear regression): Consider the linear regression model (1).

Find the parameter estimates â and b̂ using
4.1 differentiation of the least squares criterion.
4.2 Orthogonal projection in terms of the ‘orthogonalized’ design

matrix where the second column has entries xi − x̄ .
4.3 You may also try orthogonal projection in terms of the original

design matrix.
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More exercises

5. Consider the insulgas data set on the website. Use R to

5.1 fit a linear regression model with gas consumption as
dependent variable and temperature as independent variable.

5.2 extend the previous model so that there are different intercepts
depending on whether the house is insulated or not.

6. Find the unbiased estimate of the variance σ2 for a linear
regression with Varε = σ2I .

7. If Z ∈ Rn has covariance matrix Σ then show that AZ has
covariance matrix AΣAT. Use this result to show that Σ is
positive semi-definite (hint: compute the variance of aTZ for
an arbitrary vector a ∈ Rn.)

8. Show that if Z is zero-mean with covariance matrix Σ then
E‖Z‖2 = traceΣ (sum of diagonal elements of Σ).
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More exercises

9. (trace of an orthogonal matrix)

9.1 Show that the eigen-values of an orthogonal projection matrix
P on a p dimensional subspace L are either 1 or 0. What is the
multiplicity of the 1’s ?

9.2 Use the previous exercise to show that traceP = p (hint use
spectral decomposition of P and the fact that
traceAB = traceBA)
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