Linear models

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

October 5, 2016

Outline for today

- ▶ linear models
- least squares estimation
- orthogonal projections
- estimation of error variance

Linear regression

Model for random responses Y_i given fixed x_i :

$$Y_i = a + bx_i + \epsilon_i \tag{1}$$

a, b: intercept and slope.

 ϵ_i : zero-mean random noise/measurement error/model error.

Matrix form:

$$Y = X\beta + \epsilon$$

where $\beta = (a, b)^T$ and

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \quad X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{bmatrix} \quad \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

General linear model

General linear model:

$$Y = X\beta + \epsilon$$

where $Y \in \mathbb{R}^n$, X: $n \times p$ design matrix, $\beta \in \mathbb{R}^p$: regression parameter, $\epsilon \in \mathbb{R}^n$: zero-mean noise.

Objective: estimate unknown parameter β and quantify noise variation based on observation y of Y.

NB: $\mu = \mathbb{E}Y$ can be any vector in L = colX (column space of X).

Instead of specifying the design matrix we may just specify that $\mu \in L$ for some linear subspace L. Then we can use any design matrix X for which $\operatorname{col} X = L$ (that is the columns of X spans L).

Note columns need not be linear independent but if they are then one-to-one correspondence between μ and β !

Example (linear regression): let $\bar{x} = \sum_i x_i / n$. Then

$$X = egin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{bmatrix} \text{ and } ilde{X} = egin{bmatrix} 1 & x_1 - ar{x} \\ 1 & x_2 - ar{x} \\ \vdots \\ 1 & x_n - ar{x} \end{bmatrix}$$

generate the same linear subspace.

However, the columns of \tilde{X} form an orthogonal basis.

Least squares

Suppose linear model is specified by $\mu \in \mathcal{L}$. Least squares estimate of μ is

$$\hat{\mu} = \underset{\mu \in L}{\operatorname{argmin}} \|Y - \mu\|^2 = \underset{\mu \in L}{\operatorname{argmin}} \sum_{i=1}^n (Y_i - \mu_i)^2$$

If $L = \operatorname{col} X$ where X has full rank this is equivalent to finding

$$\hat{\beta} = \operatorname*{argmin}_{\beta \in \mathbb{R}^p} \|Y - X\beta\|^2$$

(unique minimum not available if X not full rank)

Estimation handled easily via orthogonal projections.

Orthogonal decomposition

Suppose L subspace of \mathbb{R}^n . Let $L^{\perp} = \{ v \in \mathbb{R}^n | v \bullet w = 0 \text{ for all } w \in L \}.$

Orthogonal decomposition: each $x \in \mathbb{R}^n$ has a unique decomposition

$$x = u + v$$

where $u \in L$ and $v \in L^{\perp}$.

Orthogonal projection: u and v above are the orthogonal projections $p_L(x)$ and $p_{L^{\perp}}(x)$ of x on respectively L and L^{\perp} .

Pythagoras:

$$||x||^2 = ||u||^2 + ||v||^2$$

Least squares and orthogonal projections

Orthogonal decomposition of data vector Y:

$$Y = p_L(Y) + R$$

where $p_L(Y) \in L$ and $R = Y - p_L(Y) \in L^{\perp}$.

By Pythagoras:

$$||Y - \mu||^2 = ||(Y - p_L(Y)) + (p_L(Y) - \mu)||^2 = ||R||^2 + ||p_L(Y) - \mu||^2$$

It thus follows that $\hat{\mu} = p_L(Y)$

We call R the residual

Orthogonal projections

- ▶ the orthogonal projection $p_L : \mathbb{R}^n \to L$ on L is a linear mapping. It is thus given by a unique matrix-transformation $p_L(x) = Px$ where P is an $n \times n$ matrix.
- ▶ the projection matrix P is symmetric $(P^T = P)$ and idempotent $(P^2 = P)$
- conversely, if a matrix Q is symmetric, idempotent and L = colQ then Q is the matrix of the orthogonal projection on L.
- if $L = \operatorname{col} X$ and X full rank then $P = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$ (whereby $\hat{\mu} = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$ and $\hat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$)

Note: $\mathbb{E}\hat{\mu} = \mu$ and $\mathbb{E}\hat{\beta} = \beta$ i.e. $\hat{\mu}$ and $\hat{\beta}$ are unbiased.

Implementation in R

Suppose L is spanned by vectors x_i and y is the observed response.

The following R call (p = 3) fits the linear model:

$$lm(y^x1+x2+x3)$$

Useful methods: coef, resid, summary.

Note: if e.g. x_1 is a categorical variable/factor we typically want one intercept for each category/level of the factor. Then we use:

$$lm(y^factor(x1)+x2+x3)$$

Let $Z = (Z_1, ..., Z_n)^T$ where the Z_i are random variables with finite variances.

Then the *variance-covariance* matrix of Z is the $n \times n$ matrix \mathbb{V} arZ whose ijth entry is \mathbb{C} ov (Z_i, Z_j) .

 \mathbb{V} arZ is symmetric, positive semi-definite and the diagonal entries are given by the variances of the Z_i .

Variance of $\hat{\beta}$

Suppose the errors $\epsilon_1, \ldots, \epsilon_n$ are uncorrelated with common variance σ^2 . I.e.

$$\mathbb{V}$$
ar $\epsilon = \sigma^2 I$

Then

$$Var\hat{\beta} = Var((X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y)$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Var\epsilon[(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}]^{\mathsf{T}}$$

$$= \sigma^{2}(X^{\mathsf{T}}X)^{-1}$$

One can show that $\hat{\beta}$ is BLUE (best linear unbiased estimate) - i.e. it attains minimum variance among all linear unbiased estimates (we will return to this in fourth lecture).

Estimation of σ^2

Suppose that $\mathbb{V}ar\epsilon = \sigma^2 I$.

Note that

$$R = (Y - \hat{\mu}) = (I - P)Y = (I - P)\epsilon$$

Hence $\mathbb{V}arR = \sigma^2(I - P)$. Moreover,

$$\mathbb{E}||R||^2 = \sigma^2 \operatorname{trace}(I - P) = \sigma^2(n - p)$$

Thus

$$\hat{\sigma}^2 = ||R||^2/(n-p)$$

is an unbiased estimate of σ^2 .

Exercises

- 1. (slide 5) Show that the columns in \hat{X} are orthogonal. Show that $colX = col\tilde{X}$.
- 2. consider the model $y_{ij} = \alpha + \alpha_i + \epsilon_{ij}$, i = 1, ..., m, j = 1, ..., k.
 - 2.1 is this a linear model?
 - 2.2 if so, then write down the design matrix.
 - 2.3 does the design matrix have full rank?
 - 2.4 in case of no to the previous question, can you find an alternative design matrix of full rank ?
- 3. show that μ and β are in one-to-one correspondence when X has full rank (hint: $(X^TX)^{-1}X^T$ is a left inverse to X).
- 4. (Linear regression): Consider the linear regression model (1). Find the parameter estimates \hat{a} and \hat{b} using
 - 4.1 differentiation of the least squares criterion.
 - 4.2 Orthogonal projection in terms of the 'orthogonalized' design matrix where the second column has entries $x_i \bar{x}$.
 - 4.3 You may also try orthogonal projection in terms of the original design matrix.

More exercises

- 5. Consider the insulgas data set on the website. Use R to
 - 5.1 fit a linear regression model with gas consumption as dependent variable and temperature as independent variable.
 - 5.2 extend the previous model so that there are different intercepts depending on whether the house is insulated or not.
- 6. Find the unbiased estimate of the variance σ^2 for a linear regression with $\mathbb{V}\mathrm{ar}\epsilon=\sigma^2I$.
- 7. If $Z \in \mathbb{R}^n$ has covariance matrix Σ then show that AZ has covariance matrix $A\Sigma A^T$. Use this result to show that Σ is positive semi-definite (hint: compute the variance of a^TZ for an arbitrary vector $a \in \mathbb{R}^n$.)
- 8. Show that if Z is zero-mean with covariance matrix Σ then $\mathbb{E}\|Z\|^2=\operatorname{trace}\Sigma$ (sum of diagonal elements of Σ).

More exercises

- 9. (trace of an orthogonal matrix)
 - 9.1 Show that the eigen-values of an orthogonal projection matrix P on a p dimensional subspace L are either 1 or 0. What is the multiplicity of the 1's ?
 - 9.2 Use the previous exercise to show that traceP = p (hint use spectral decomposition of P and the fact that traceAB = traceBA)