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What is a good statistical model ?

Desirable properties:

(a) accurate predictions

(b) good trade-off between fit of data and model complexity

(c) interpretable

(d) contains relevant variables for hypothesis testing/assessment
of scientific question

(e) model assumptions valid

How to assess:
(a): cross validation.
(b): AIC/cross validation.
(c) and (d): qualitative assessment.
(d) depends on model. I.e. decomposition Y = Xβ + ε always
valid. Assumptions to check are those imposed on ε = Y − Xβ.
E.g. ε ∼ N(0, σ2I ). For this, residuals r = y −X β̂ obviously useful.
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General linear model and BLUE

General linear model:
Y = Xβ + ε

where X n × p fixed matrix, β ∈ Rp parameter vector, ε ∈ Rn

zero-mean random noise.

Let L = col(X ). Assume Varε = σ2I . Then least squares estimate
µ̂ = pL(y) = PY is BLUE (best linear unbiased estimate):
Var(µ̃)− Var(µ̂) is positive semi-definite for any other linear
unbiased estimate µ̃ = BY where Eµ̃ = µ.

More generally, if ψ = Aµ for some matrix A then ψ̂ = Aµ̂ = APY
is BLUE of ψ.

In particular (full rank X ), β̂ = (XTX )−1XTY is BLUE.
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Proof that ψ̂ = APY is BLUE for ψ = Aµ:

Assume ψ̃ is LUE. I.e. ψ̃ = BY and Eψ̃ = Bµ = Aµ for all µ ∈ L.
We also have APµ = Aµ for all µ ∈ L (which implies that ψ̂ is
unbiased). Thus for all w ∈ Rp

(B − AP)Pw = BPw − APw = APw − APw = 0

since Pw ∈ L. This implies (B − AP)P = 0 which gives

Cov(ψ̃ − ψ̂, ψ̂) = σ2(B − AP)PT = 0

so that
Var(ψ̃) = Var(ψ̃ − ψ̂) + Varψ̂

and the proof is completed.

Note: like Pythogoras if we say ψ̃− ψ̂ and ψ̂ orthogonal when their
covariance is zero.
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Optimal prediction revisited
X and Y random variables, g real function. General result

Cov(Y − E[Y |X ], g(X )) =

Cov(E[Y − E[Y |X ]|X ],E[g(X )|X ])+

ECov(Y − E[Y |X ], g(X )|X ) = 0

Note, since E[Y − E[Y |X ]] = 0 we also have

E(Y − E[Y |X ])g(X ) = 0

In particular, for any prediction Ỹ = f (X ) of Y :

E
[
(Y − E[Y |X ])(E [Y |X ]− f (X ))

]
= 0

from which it follows that

E(Y − Ỹ )2 = E(Y − E[Y |X ])2 + E(E[Y |X ]− Ỹ )2

Let’s consider EXY as inner product for random variables X and
Y .
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Pythagoras and conditional expectation
Space of real random variables with finite variance may be viewed
as a vector space with inner product and (L2) norm

< X ,Y >= E (XY ) ‖X‖ =
√
EX 2

Orthogonal decomposition (Pythagoras):

‖Y ‖2 = ‖E[Y |X ]‖2 + ‖Y − E[Y |X ]‖2

E[Y |X ] may be viewed as projection of Y on X since it minimizes
distance

E(Y − Ỹ )2

among all predictors Ỹ = f (X ).

For zero-mean random variables, orthogonal is the same as
uncorrelated.

(Grimmett & Stirzaker, Prob. and Random Processes, Chapter 7.9 good

source on this perspective on prediction and conditional expectation)
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Basis functions representations of unknown function

Suppose we are given measurements (xi , yi ) where yi are
observations of Yi with EYi = f (xi ) for some unknown function f .

Idea: represent f (·) as a linear combination of specified basis
functions

f (x) =

p−1∑
i=0

βiBi (x)

Example (linear regression): p = 2, B0(x) = 1, B1(x) = x .

Polynomial regression: Bi (x) = x i , i = 0, . . . , p − 1
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Overfitting

Suppose we are given observations (xi , yi ) i = 1, . . . , n.

Then we can always find a nth order polynomial f̂ (x) that fits
exactly these observations - i.e. yi − f̂ (xi ) = 0 for all i (Note: if
design matrix n × n and full rank then L = Rn and P = I ).

However, typically such a high order polynomial fits actual data
“too well” - it fits not only f but also the noise.

This means fitted f̂ bad for prediction of new observations.

Another problem: polynomials “global” - if just one (xi , yi ) is
changed this affects the whole fitted polynomial.
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Piecewise linear function

A first approximation of f might be a linear regression
f (x) = a + bx but this is often too crude.

A next step might be a piecewise linear function f

f (x) = al + bl(x − cl), x ∈ [cl , cl+1[

for some ‘cut’-points or ‘knots’ cl , l = 1, . . . , p.

However, we typically want f to be continuous !

This is ensured if we require al + bl(cl+1 − cl) = al+1.
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A continous piece-wise linear curve from c0 to cp is obtained with
the following parametrization:

f (x) =


a0 + b0(x − c0) x ∈ [c0, c1]

f (c1) + b1(x − c1) x ∈]c1, c2]

f (c2) + b2(x − c2) x ∈]c2, c3]

etc.

This still defines a linear model !

Basis functions: B0(x) = 1,

B1(x) =

{
(x − c0) x ∈ [c0, c1]

(c1 − c0) x > c1
B2(x) =


0 x ∈ [c0, c1]

(x − c1) x ∈]c1, c2]

(c2 − c1) x ∈]c2, c3]

Yet another basis: B0(x) = 1, B1(x) = x ,
B2(x) = 1(x > c2)(x − c2), B3(x) = 1[x > c3](x − c3), . . .
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Alternative basis functions for piecewise linear functions
Cut-points c0, c1, . . . , cp−1, cp.

For i = 1, . . . , p:

Bi (x) =


x−ci−1

ci−ci−1
x ∈ [ci−1, ci [

1− x−ci
ci+1−ci x ∈ [ci , ci+1[

0 otherwise

Note: f (x) =
∑p−1

i=0 βiBi (x) piecewise linear and continuous.

Hence we obtain exactly same set of functions as with basis on
previous slide !

Note: new set of basis functions “local” - only non-zero on
intervals [ci−1, ci+1[. Thereby more sparse XTX matrix.

Disadvantage: f above is not smooth at cutpoints.
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B-spline basis functions

Consider doubly infinite sequence of equi-distant cut points
. . . , c−1, c0, c1, c2, . . . with (wlog) ci+1 − ci = 1.

Define Bi (x) = B(x − ci ) where

B(x) =



1
6(x + 2)3 x ∈ [−2,−1[
1
6(1 + 3(x + 1) + 3(x + 1)2 − 3(x + 1)3) x ∈ [−1, 0[
1
6(4− 6x2 + 3x3) x ∈ [0, 1[
1
6(1− 3(x − 1) + 3(x − 1)2 − (x − 1)3)) x ∈ [1, 2[

0 otherwise

B(x) is a cubic spline: composed of the constant function
g(x) = 0 and 4 third-order polynomials such that it is everywhere
continuous and twice-differentiable.
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The B-spline basis function:
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Cubic spline

f (x) = fi (x) = ai0+ai1(x−ci )+ai2(x−ci )2+ai3(x−ci )3 x ∈ [ci , ci+1[

Require continuity
fi (ci+1) = fi+1(ci+1)

and twice differentiability:

f ′i (ci+1) = f ′i+1(ci+1) f
′′
i (ci+1) = f

′′
i+1(ci+1)

Again possible to compute basis functions and fit model in R.

R Function bs() can be used to generate required basis functions
for linear model.

Suppose we use cut-points/knots c1, . . . , cq and the q − 1
associated cubic polynomials. Then we have
p = (q − 1) ∗ 4− 3 ∗ (q − 2) = q + 2 free parameters.
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Equivalence of bases for cubic splines

Fitting a cubic spline with knots 0, 1, . . . , q − 1 (starting at c1 = 0
and ending at cq = q − 1) is equivalent to fitting the linear model
based on the B-spline basis functions B(x − i), i = −1, . . . , q.

Note: same number of free parameters.

Intuitively makes sense, since both models generate continous
piecewise cubic splines with continuous first and second derivatives.
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Exercises

1. Write down the design matrix for a piece-wise linear regression
model with cut-points c1 and c2 (i.e. the curve is composed of
three segments).

2. Implement in R the above piece-wise model for the wind/power
data. Try also the ’local’ basis functions.

3. Write down the equations for a cubic spline with knots 0, 1, 2
starting at 0 and ending at 2. Write down the associated design
matrix.

4. Fit a cubic spline to the wind/power data (use your own basis
or the R-function bs() with different choices of knots).
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