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What is a good statistical model 7

Desirable properties:

(a) accurate predictions

(b) good trade-off between fit of data and model complexity

(c) interpretable

(d) contains relevant variables for hypothesis testing/assessment
of scientific question

(e) model assumptions valid

How to assess:

(a): cross validation.

(b): AIC/cross validation.

(c) and (d): qualitative assessment.

(d) depends on model. l.e. decomposition Y = X + € always
valid. Assumptions to check are those imposed on ¢ = Y — X§.

E.g. € ~ N(0,021). For this, residuals r = y — X 3 obviously useful.
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General linear model and BLUE

General linear model:
Y =XB+e¢

where X n x p fixed matrix, 5 € RP parameter vector, € € R"
zero-mean random noise.

Let L = col(X). Assume Vare = 2/. Then least squares estimate
i = pL(y) = PY is BLUE (best linear unbiased estimate):

Var(fi) — Var(ji) is positive semi-definite for any other linear
unbiased estimate i = BY where Eji = p.

More generally, if 1 = Au for some matrix A then LZAJ = Al = APY
is BLUE of 1.

In particular (full rank X), 3 = (XTX)"1XTY is BLUE.
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Proof that 1) = APY is BLUE for v = Apu:

Assume 1) is LUE. l.e. ¢ = BY and Et¢) = By = Ay for all p e L.
We also have APp = Ap for all p € L (which implies that 1) is
unbiased). Thus for all w € RP

(B— AP)Pw = BPw — APw = APw — APw =0
since Pw € L. This implies (B — AP)P = 0 which gives
Cov(s) —1),1) = 0*(B ~ AP)PT =0

so that N 5
Var(y) = Var(¢ — ¢) + Vary
and the proof is completed.

Note: like Pythogoras if we say 0 — & and qﬁ orthogonal when their
covariance is zero.
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Optimal prediction revisited
X and Y random variables, g real function. General result
Cov(Y - E[Y[X], &(X)) =
Cov(E[Y — E[Y[X]|X], E[g(X)|X])+
ECov(Y — E[Y|X],g(X)|X) =0
Note, since E[Y — E[Y|X]] = 0 we also have
E(Y —E[Y[X])g(X) =0

In particular, for any prediction Y = f(X) of Y:
E[(Y - E[YIXD(E[YIX] - f(X))] =0
from which it follows that

E(Y — Y)? = E(Y — E[Y|X])? + E(E[Y|X] — Y)?

Let's consider EXY as inner product for random variables X and
Y.

6
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Pythagoras and conditional expectation

Space of real random variables with finite variance may be viewed
as a vector space with inner product and (Lz) norm

< X,Y >=E(XY) |X| = VEX2

Orthogonal decomposition (Pythagoras):
Y1 = [IE[Y XTI + Y — E[Y[X]||?

E[Y|X] may be viewed as projection of Y on X since it minimizes
distance

E(Y — Y)?
among all predictors Y = f(X).
For zero-mean random variables, orthogonal is the same as
uncorrelated.

(Grimmett & Stirzaker, Prob. and Random Processes, Chapter 7.9 good
source on this perspective on prediction and conditional expectation)
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Basis functions representations of unknown function

Suppose we are given measurements (x;, y;) where y; are
observations of Y; with EY; = f(x;) for some unknown function f.

Idea: represent f(-) as a linear combination of specified basis
functions

p—1
f(x) = BiBi(x)
i=0
Example (linear regression): p =2, By(x) =1, Bi(x) = x.

Polynomial regression: Bj(x) =x',i=0,...,p—1
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Overfitting

Suppose we are given observations (x;,y;) i=1,...,n.
Then we can always find a nth order polynomial f(x) that fits
exactly these observations - i.e. y; — f(x;) = 0 for all i (Note: if

design matrix n x n and full rank then L =R" and P = /).

However, typically such a high order polynomial fits actual data
“too well” - it fits not only f but also the noise.

This means fitted # bad for prediction of new observations.

Another problem: polynomials “global” - if just one (x;, y;) is
changed this affects the whole fitted polynomial.
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Piecewise linear function

A first approximation of f might be a linear regression
f(x) = a+ bx but this is often too crude.

A next step might be a piecewise linear function f
f(x)=a +b(x—¢), x€lea,cui

for some ‘cut’-points or ‘knots’ ¢;, I =1,...,p.
However, we typically want f to be continuous !

This is ensured if we require aj + bj(c/+1 — ¢1) = ajy1-
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A continous piece-wise linear curve from ¢y to ¢, is obtained with
the following parametrization:

ap + bo(X — Co) X € [Co, C1]
f(Cl) + bl(X — Cl) X E]Cl, C2]
f(e) + ba(x — @) x €]ea, 3]
etc.

f(x) =

This still defines a linear model !
Basis functions: By(x) =1,

X — G x €[, € x € [eo, a1l
Bi(x) = {E ) el e {e-a) xdal
! 0 ! (C2 — Cl) X E]Cz, C3]

Yet another basis: By(x) =1, Bi(x) = x,
BQ(X) = 1(X > C2)(X — C2), B3(X) = 1[X > C3](X — C3), e
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Alternative basis functions for piecewise linear functions

Cut-points cg, 1, ..., Cp—1, Cp-
Fori=1,...,p:
X_C’71 . -
C—ci1 X € [CI—17 C/[
_ X—¢;
B,’(X) =<¢1-— g X € [C,'7 C,'_|_1[
0 otherwise

Note: f(x) = Z?:_ol BiBi(x) piecewise linear and continuous.

Hence we obtain exactly same set of functions as with basis on
previous slide !

Note: new set of basis functions “local” - only non-zero on
intervals [cj_1, ci11][. Thereby more sparse XTX matrix.

Disadvantage: f above is not smooth at cutpoints.
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B-spline basis functions

Consider doubly infinite sequence of equi-distant cut points
...,C_1,C0,C1,C,... With (WlOg) Ciy1— ¢ = 1.

Define Bi(x) = B(x — ¢;) where

T(x+2)3 x € [-2,—1]

T143(x+1)+3(x+1)2=3(x+1)%) x€[-1,0]
B(x) = { £(4 —6x*+3x3) x €[0,1]

F1-3(x—1)+3(x—1)>—(x—1)*) x€[1,2]

| 0 otherwise

B(x) is a cubic spline: composed of the constant function
g(x) = 0 and 4 third-order polynomials such that it is everywhere
continuous and twice-differentiable.
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The B-spline basis function:

0.4 05 0.6
I I I

B(x, 0, 1)

0.2 0.3
I

0.1
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Cubic spline

f(x) = fi(x) = ajptan(x—c)+tan(x—c)?+ain(x—c)® x € [c, ciy1]

Require continuity
fi(civ1) = fira(cit1)
and twice differentiability:

fi(civ1) = floa(civr) i (cir1) = fia(civn)

Again possible to compute basis functions and fit model in R.

R Function bs() can be used to generate required basis functions
for linear model.

Suppose we use cut-points/knots ci, ..., cq and the g — 1
associated cubic polynomials. Then we have
p=(g—1)+x4—3%(qg—2) =g+ 2 free parameters.
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Equivalence of bases for cubic splines

Fitting a cubic spline with knots 0,1,...,qg — 1 (starting at c; =0
and ending at ¢; = g — 1) is equivalent to fitting the linear model
based on the B-spline basis functions B(x — i), i = —1,...,q.

Note: same number of free parameters.

Intuitively makes sense, since both models generate continous
piecewise cubic splines with continuous first and second derivatives.
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Exercises

1. Write down the design matrix for a piece-wise linear regression
model with cut-points ¢; and ¢; (i.e. the curve is composed of
three segments).

2. Implement in R the above piece-wise model for the wind/power
data. Try also the 'local’ basis functions.

3. Write down the equations for a cubic spline with knots 0,1,2
starting at 0 and ending at 2. Write down the associated design

matrix.

4. Fit a cubic spline to the wind/power data (use your own basis
or the R-function bs () with different choices of knots).
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