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Session 6: Logistic Regression

Analysis of Binary Data

Consider the data on age of menarche for a sample of Warsaw girls.

Each girl was asked whether she had had her
first period.  The data was then grouped by age
into fairly narrow age groups.  Within each age
group the total number of girls (N) was
recorded and the number who had had their
first period (R).  Also recorded is the mid-point
of the age range for that age group (AGE).

How should we analyse such data?

If we had conducted a longitudinal study over a
long time we would have been able to establish
each girl’s age when she had her first period.
We could then have studied the distribution of
these ages.

However, the study was cross-sectional taken
at a particular point in time, so that this is not
how the data was recorded since;

 i. For those girls who had not had their first
period we cannot record what age they
would be when this occurred.

 ii. For those girls who had had their first
period it was felt that their memory of the
exact age they were was unreliable.  Thus
only the fact that they had had their first
period was recorded.

      R      N     AGE
      0    376    9.21
      0    200   10.21
      0     93   10.58
      2    120   10.83
      2     90   11.08
      5     88   11.33
     10    105   11.58
     17    111   11.83
     16    100   12.08
     29     93   12.33
     39    100   12.58
     51    100   12.83
     47     99   13.08
     67    106   13.33
     81    105   13.58
     88    117   13.83
     79     98   14.08
     90     97   14.33
    113    120   14.58
     95    102   14.83
    117    122   15.08
    107    111   15.33
     92     94   15.58
    112    114   15.83
   1049   1049   17.58
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It is clear that we can still base our model on the idea of an underlying distribution of
the age of menarche.
We now consider the probability that a girl of a certain age will have had her first period
at some time previous.  This is the probability that her age of menarche is less than her
current age.  In terms of the distribution of age of menarche it is the cumulative
distribution function derived from this distribution

Models for Binary Data

For Normal regression models we have two basic elements:
 i. A linear relationship between the mean of the dependent variable and explanatory

variables.
 ii. A normal distribution which describes the sampling variation of the observations.

Binary data consists of only two possible observations, yes/no, right/wrong, dead/alive
etc.  We clearly need different modelling assumptions.  Consider first the case where
we record R “positive” responses out of the N samples.  For example, where we record
that R girls out of the total of N girls in an age group had had their first period.  We wish
to consider the relationship between the probability of a positive response (i.e. has had
her first period) and explanatory variables (age in this case).  This must be a non-linear
relationship since the probability must lie between 0 and 1 and a linear function would
violate this condition at some point.  We linearise this relationship by applying a
suitable transformation.  In the case in which we assume the underlying distribution is
Normal this transformation is called the Probit transformation:

AGE)()(Probit 1 bapp +=Φ= −

Other transformations have been proposed.  A popular choice is the Logit
transformation, which has a relatively simple mathematical form:

AGE
1

ln)(Logit ba
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This corresponds to the underlying distribution being a logistic distribution which is very
similar to the Normal distribution.

How do we estimate the parameters of this relationship?  We need some method
corresponding to the Least Squares method used for Normal regression models.  The
general concept is that of Maximum Likelihood.  The data is of the form of R positive
responses out of N trials.  For each trial we assume there is a probability p of a positive
response.  The distribution of R is the Binomial distribution with parameters N and p.
Thus for a particular choice of parameters a and b we can compute the corresponding
p for each age group and hence the probability of obtaining the observed values of R.
This is called the Likelihood of the data.  The “best” choice of a and b is taken to be
the values that make the Likelihood a maximum.  For the Normal distribution this
method results in the Least Squares method.

In general obtaining Maximum Likelihood estimates from a non-linear model requires a
complicated numerical procedure which is iterative.  That is, it goes through a process
of refining the current estimates of the parameters until the maximum of the Likelihood
is reached.  This process is not guaranteed to work!
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Hypothesis Testing

Having estimated the parameters of the model we would wish to test whether certain of
these parameters might be zero.  One approach is to attempt to find the sampling
distribution of the parameter estimate.  In most non-Normal models there are no exact
results for the sampling distributions.  However, we can use approximations.  The
approximate (asymptotic) distribution of the parameter estimates is Normal and
furthermore we can find the approximate standard error of the estimate.  Thus we can
apply the usual t-test to the parameter estimate for a test of whether the parameter is
zero.

$

. . ( $)
b

s e b
t≈

This approximation works best for large samples.  For small samples the Normal
approximation may not work well since the true sampling distributions are often skew.
An alternative approach is to follow the Analysis of Variance method.  The basis of this
is to have a measure of model fit which measures the discrepancy between the model
and the data.  For Normal models this is the Residual Sum of Squares.  Testing a
parameter then is based on how much this measure of discrepancy is reduced when
this parameter is introduced into the model.  For non-Normal models this measure is
called the Deviance and with count data is often called Chi-squared Goodness of
Fit.  In general the Deviance based on the value of the (maximised) Likelihood or a log
transformation of it.  The test is then based on the reduction is this measure of fit.  A
good approximation to the distribution of this reduction is the Chi-squared distribution.
Thus we can test the significance of parameters using a Chi-Squared test.  This
approximation is more reliable than the Normal approximation described earlier.  The
two tests are not identical as in Normal models.

− ≈2 2log( )Likelihood ratio χ

If we use the Deviance definition of Loss in model fitting we can compare model by
change in Loss. This is also referred to as the Likelihood Ratio Test (LR) as it is
equivalent to comparing the models by the ratio of their maximised Likelihood values.

Consider binary data with y = 0 or 1, such that:

prob( condition true ) = prob( y=1 ) = p

then the Likelihood for a single observation, y, is p if y=1 and (1-p) if y=0.  The
Deviance can be expressed conveniently in various ways such as:

( )∑ −−+− )1log()1(log2 pypy
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Interpreting Logistic Regression in SPSS

We have seen that the logit model is given by

AGE
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ln)(Logit ba
p
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So, using SPSS, we are going to obtain values for coefficients a  and b  (-21.18 and
1.629).  Replacing these into the equation, we obtain

AGE629.118.21
1
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In order to interpret this result, let us try to substitute a value for AGE, and let us try
with AGE=10.  That is, we would like to see how probable it is for a 10 year old to have
already had her period.

Substituting, we obtain

( ) 89.410629.118.21
1

ln)(Logit −=+−=
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But this is NOT probability.  To start having some important values, find
( ) 0075.0exp 89.4 =− .  This is known as the odds value.  This means that a change in a

unit of AGE multiplies the odds of a girl already having her period by 0.0075.  If you
want to obtain the probability of a girl aged 10, that has already had her period, use the
formula

007.0
0075.01

0075.0

exp1

exp

exp1

exp
p 89..4

89.4

)(Logit

)(Logit
=

+
=

+
=

+
= −

−

p

p

This is a very small probability, seeing that it is improbable that a girl less than 10
years of age has her period already.

Similarly, one can show that for a girl aged 18, the probability is 0.9997.

It is important to understand that the probability, the odds, and the logit are three
different ways of expressing exactly the same thing.
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Logistic Regression in SPSS

There are two ways of fitting Logistic Regression models in SPSS:

1. Regression / Probit

This is designed to fit Probit models but can be switched to Logit models.

The data is expected to be in the R out of N form, that is, each row corresponds to a
group of N cases for which R satisfied some condition.  The procedure is somewhat
limited as it allows only one factor and does not allow the user to specify interactions
explicitly (though it will conduct a test for parallelism). Also has a facility for estimating
an extra parameter for “Natural Response Rate”.

Doesn’t allow predicted values to be saved and the output is limited.

Will work with binary (0/1) data by defining a new variable for N with all values = 1.
(Remember to switch OFF frequency output).

So, for the Menarche data, if we want to find the logit model, we press Analyze,
Regression, Probit, to obtain the following:

Make sure you move r under the Response Frequency, and n under Total Observed.
Move age under the Covariate box.  Choose Logit model.  Press Options to modify the
output produced by SPSS.
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Under Statistics, switch off Frequncies and Fiducial confidence intervals.  (You can
leave them on, however these will produce loads of lines in the output file, and if you
need only the model, these will only confuse you more).

Press Continue, then Ok to obtain the following output.

* * * * * * * * * * * *  P R O B I T    A N A L Y S I S  * * * * * * * * * *

 Parameter estimates converged after 17 iterations.
 Optimal solution found.

 Parameter Estimates (LOGIT model:  (LOG(p/(1-p))) = Intercept + BX):

           Regression Coeff.  Standard Error     Coeff./S.E.

   AGE               1.62963          .05885        27.69354

                   Intercept  Standard Error  Intercept/S.E.

                   -21.18218          .76891       -27.54824

  Pearson  Goodness-of-Fit  Chi Square =     23.606    DF = 23   P =  .426

  Since Goodness-of-Fit Chi square is NOT significant, no heterogeneity
  factor is used in the calculation of confidence limits.

The Goodness-of-Fit Chi Square, is the log likelihood multiplied by –2.  Because the
log-likelihood is negative, the Goodness-of-Fit Chi Square is positive, and larger values
indicate worse prediction of the dependent variable.  Therefore we are after a non-
significant p value (as in this case).
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SPSS also outputs a graph of the predicted variable against the covariate age:

Logit Transformed Responses
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Open the file miners.sav.  This file contains data about women and whether they have
children or not.  We are also considering a factor, wheeze.  To try to find a logit model
for brthless, using age as covariate  and wheeze as factor.

Move brthless as the Response Frequency and num as the Total Observed.  Move age
as the Covariate and wheeze  as Factor.  You notice that you have to define the range
for wheeze  as

Click the Options button, and choose the Parallelism test.  This will give an indication
of the difference between the model fitting due to the factor.
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The following output was obtained

* * * * * * * * * * * *  P R O B I T    A N A L Y S I S  * * * * * * * * * *
Group Information

    WHEEZE    Level  N of Cases    Label
                  1           9        1
                  2           9        2

MODEL Information

      ONLY Logistic Model is requested.

* * * * * * * * * * * *  P R O B I T    A N A L Y S I S  * * * * * * * * * *
 Parameter estimates converged after 20 iterations.
 Optimal solution found.

 Parameter Estimates (LOGIT model:  (LOG(p/(1-p))) = Intercept + BX):

           Regression Coeff.  Standard Error     Coeff./S.E.

   AGE                .08667          .00285        30.38923

                   Intercept  Standard Error  Intercept/S.E.  WHEEZE

                    -4.16258          .14283       -29.14388         1
                    -7.00056          .14620       -47.88353         2

  Pearson  Goodness-of-Fit  Chi Square =     35.087    DF = 15   P =  .002
           Parallelism Test Chi Square =     19.458    DF = 1   P =  .000

  Since Goodness-of-Fit Chi square is significant, a heterogeneity
  factor is used in the calculation of confidence limits.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

This means that the output gave 2 logits, namely:

( )AGE08667.016258.4
1
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The first one should be used when the factor wheeze is equal to 1, while the second
when the factor wheeze  is equal to 2.  Interpretation of the logit is as in the previous
example.

The goodness of fit test shows a bad prediction of the dependent variable.  The graph
is given by
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Logit Transformed Responses
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2. Regression / Binary Logistic

Expects the dependent variable to be binary (any values).

If the data is in the form of R out of N it has to be manipulated into the alternative form.
This can be done in the SPSS data editor window (using SPSS Compute and Cut and
Paste), but may be easier in some other software such as a spreadsheet. The data will
end up with twice as many rows as the values of N-R (not R) must be appended to the
R values in a single column. A binary variable has to be set up to distinguish the trues
from the falses and all explanatory variables must be duplicated. The variable holding
the R and N-R values is then declared as a weight variable through Data / Weight
Cases.  Compare the 2 SPSS data files, miners.sav and miners2.sav.

Model specification is more flexible as we can have a mixture of Factors and
Covariates and Interactions.  However, the method of definition is different from
General Linear Models. To include a Factor first select the explanatory variable then
declare it as Categorical by opening the Categorical box and selecting it again.
Interactions are included by selecting more than one variable simultaneously (Ctrl and
click) and entering them via the [>a*b>] button. Stepwise procedures are available
(Forward/Backward). Blocks of terms are also available, so that model comparison is
made easier.

Predicted values (probabilities) can be saved as well as diagnostics.  Only the Logit
transformation is allowed, cannot switch to Probit.

So in order to test the miners data, remember first to weight by the variable r.
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Then, press Analyze, Regression, Binary Logistic.

Move brthless as the dependent variable, age and wheeze as the covariates.  You can
choose from the different methods of inclusion in the model, by pressing the Method
drop down list.

In order to change the variable wheeze into a categorical variable, press the
Categorical button.  Move wheeze under Categorical Covariates.

Press Continue, then OK.  Some of the output produced by SPSS follows.

Dependent Variable Encoding

0
1

Original Value
.00
1.00

Internal Value
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SPSS gives the way it had encoded the binary variable brthless.  In this case, the
original coding was left, but if the variable had been coded as 3 and 4 (e.g.), these
would have been recoded to 0 and 1.  So in our case, 0 means having a child, and 1
means not having a child.

Categorical Variables Codings

18 1.000
18 .000

1.00
2.00

WHEEZE
Frequency (1)

Paramete
r coding

SPSS also gives us information of how the factor wheeze was recoded.  This will be
useful when we write down the equation.  Note that SPSS works out Bexp , or the odds
value.

Variables in the Equation

-1.877 .022 7414.155 1 .000 .153ConstantStep 0
B S.E. Wald df Sig. Exp(B)

Variables not in the Equation

2134.077 1 .000
5336.834 1 .000
6039.885 2 .000

AGE
WHEEZE(1)

Variables

Overall Statistics

Step
0

Score df Sig.

Since we chose the Method Enter, SPSS starts by insert only a constant in the model.
In fact, age and wheeze are still out of the model.

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

5358.839 2 .000
5358.839 2 .000
5358.839 2 .000

Step
Block
Model

Step 1
Chi-square df Sig.

On Step 1, SPSS enters all the variables in the model.  The coefficients here gives us
a measure of how well the model fits.  We must look mostly at the Model coefficient.  It
is analogous to the multivariate F test for linear regression.  The null hypothesis states
that information about the independent variables does not allow us to make better
prediction of the dependent variable.  Therefore we would want that this chi-squared
value is significant (as in this example).
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Variables in the Equation

.087 .003 923.365 1 .000 1.091
2.838 .056 2588.087 1 .000 17.078

-7.000 .146 2292.811 1 .000 .001

AGE
WHEEZE(1)
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: AGE, WHEEZE.a. 

The last table produced by SPSS is the one containing the variable coefficients.  The
formula should read

( ) ( )WHEEZE(1)AGE 838.208667.0000.7
1

ln)(Logit ++−=







−

=
p

p
p

Remember that wheeze was recoded to take 0 and 1 as values, and therefore if we
substitute 0 for wheeze(1), we obtain the 2nd equation of page 9, and if we substitute 1,
we obtain the 1st equation of page 9.

Suppose we wanted to look at the interaction age*wheeze.  However we would like to
first fit the model without interaction, then add the interaction by using the Forward
Stepwise (Likelihood Ratio).

Press Analyze, Regression, and Binary Logistic as before.  However, this time press
Next.  Choose age and wheeze  together by using the CTRL button.  Press the >a*b>,
and choose Forward:LR as the method.  Press OK.

The first part of the output is identical to the previous example.  What differs is when
the interaction comes in.
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Block 2: Method = Forward Stepwise (Likelihood Ratio)

Omnibus Tests of Model Coefficients

19.540 1 .000
19.540 1 .000

5378.378 3 .000

Step
Block
Model

Step 1
Chi-square df Sig.

The model is still highly significant, showing that the independent variables predict the
dependent variable well.

Variables in the Equation

.101 .004 515.318 1 .000 1.106
4.089 .292 195.870 1 .000 59.697
-.025 .006 19.312 1 .000 .975

-7.714 .228 1147.484 1 .000 .000

AGE
WHEEZE(1)
AGE by WHEEZE(1)
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: AGE * WHEEZE .a. 

The equation is given by

( ) ( ) ( )WHEEZE(1)*AGEWHEEZE(1)AGE 025.0089.4101.0714.7)(Logit −++−=p

Model if Term Removed

-4479.588 19.540 1 .000
Variable

AGE * WHEEZEStep 1

Model Log
Likelihood

Change in
-2 Log

Likelihood df
Sig. of the
Change

The last piece of output tells us what would happen to the model if the interaction term
is removed.  As one can see, the –2log likelihood increases significantly, showing a
worse fit.  Therefore the interaction term improves the overall fit.

To find the probability that a woman aged 25, and having a wheeze condition of 1, has
no children, first substitute in equation and find the exp to obtain the odds.

( ) ( ) ( ) 725.1125025.01089.425101.0714.7)(Logit −=−++−= *p

0188.0exp 725.1 =− .

Then transform to obtain the probability 0185.0
exp1

exp
725.1

725.1
=

+ −

−
.
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Example

This example uses the gss93t.sav data file.  This is a subset of the original gss92 data
file.  The analysis uses as a dependent the attitude variable cappun, which is coded
‘1= favor the death penalty’, ‘2=oppose the death penalty’.  The independent variables
are age, degree2 (college degree or not), race, sex, letdie1 (if would allow the
incurable to die), size  (of place), and polviews  (liberalism-conservatism).

Press Analyze, Regression and Binary Logistic.  Fill in the form as shown.

Remember to choose the variables degree2, race, sex and letdie1 as categorical
variables.  Also note that in this case, no weighting is necessary, as each row
corresponds to one frequency.

Press Ok.

Dependent Variable Encoding

0
1

Original Value
Favor
Oppose

Internal Value

SPSS lets us know below that it recodes cappun, the dependent variable, from 1, 2
coding to 0, 1.  So we will find the probability of opposing the death penalty.
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Categorical Variables Codings

355 1.000 .000
42 .000 1.000

26 .000 .000
321 1.000
102 .000
278 1.000

145 .000
187 1.000
236 .000

white
black

other

Racew of
Respondent

No College degree
College degree

College
Degree

Yes

No

Allow Incurable
Patients to Die

Male
Female

Respondent's
Sex

Frequency (1) (2)
Parameter coding

Above is SPSS's parameterisation of the categorical independent variables.  Note as
before that the last category of each variable is ommitted.

Omnibus Tests of Model Coefficients

38.718 7 .000
38.718 7 .000
38.718 7 .000

Step
Block
Model

Step 1
Chi-square df Sig.

The above shows that the overall model predicts the dependent variable.

The list of the coefficients is given by

Variables in the Equation

-.525 .263 4.000 1 .046 .591
8.281 2 .016

-.533 .471 1.283 1 .257 .587

.487 .570 .731 1 .392 1.628

.000 .000 2.974 1 .085 1.000
-.183 .096 3.652 1 .056 .833
-.798 .263 9.182 1 .002 .450

-.718 .283 6.444 1 .011 .488
.948 .673 1.985 1 .159 2.581

SEX(1)
RACE
RACE(1)

RACE(2)
SIZE
POLVIEWS
LETDIE1(1)

DEGREE2(1)
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: SEX, RACE, SIZE, POLVIEWS, LETDIE1, DEGREE2.a. 

Suppose we wanted to find the probability of opposing the capital sentence, of a white
female with a college degree, with a size of place of 400, having a polview of 2 and in
favour of letting the incurable die.

( ) ( ) ( ) ( ) 749.01798.02183.040001533.0948.0)(Logit −=−−+−=p
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4728.0exp 749.0 =− .

Then transform to obtain the probability 32.0
exp1

exp
749.0

749.0
=

+ −

−
.

Suppose we just wanted to see how a model with race, age and their interaction
predicts the dependant variable.  This time save the predicted values, by pressing
Save and choosing Probabilities.

The model should first enter the variables age and race, and then their interaction
using the method enter in both cases.

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

36.157 3 .000
36.157 3 .000
36.157 3 .000

Step
Block
Model

Step 1
Chi-square df Sig.

Model Summary

1440.612 .026 .039
Step
1

-2 Log
likelihood

Cox & Snell
R Square

Nagelkerke
R Square

This is obtained in the first step, when the 2 variables are entered into the equation.
Note the large value for the –2log likelihood.
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Variables in the Equation

-.001 .004 .028 1 .866 .999
37.615 2 .000

-.935 .262 12.757 1 .000 .393

.049 .301 .027 1 .870 1.051
-.454 .292 2.422 1 .120 .635

AGE
RACE
RACE(1)

RACE(2)
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: AGE, RACE.a. 

When the interaction was inputted, the following output was obtained:

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

1.077 2 .583
1.077 2 .583

37.235 5 .000

Step
Block
Model

Step 1
Chi-square df Sig.

Model Summary

1439.534 .027 .040
Step
1

-2 Log
likelihood

Cox & Snell
R Square

Nagelkerke
R Square

Variables in the Equation

.005 .017 .074 1 .786 1.005
1.469 2 .480

-.632 .763 .686 1 .407 .532
-.127 .873 .021 1 .884 .881

1.077 2 .584

-.007 .018 .167 1 .683 .993
.003 .020 .029 1 .865 1.003

-.667 .733 .827 1 .363 .513

AGE
RACE
RACE(1)
RACE(2)

AGE * RACE
AGE by RACE(1)
AGE by RACE(2)
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: AGE * RACE .a. 

This shows a not significant change in the model, so one should think of removing the
interaction between the two variables.

A graph of the predicted probabilities with age, using race as factor follows.
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If the interaction term was removed, the scatter plot is
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which has a similar shape for the 3 different races.

Practical Session 6: Logistic Regression Models

1. Repeat the analysis in the lecture.

Using the GSS data (spsswin\data\gss93t.sav)

 i. Restrict your analysis to women only.
 ii. Fit logistic regression models using AGE as covariate and RACE as a factor.
 iii. Taking POLVIEWS as a covariate  examine any effects and interactions with other

variables.
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 iv. Insert the other variables (except id), and be careful to clearly mark the factors as
categorical variables,

2. Using the data in Q1 include the men into the analysis with SEX as a factor.  What
is the interpretation of this model?  What is the probability that a black female with
no college degree, with a size of place of 100, having a polview of 3, in favour of
letting the incurable die, and aged 25 opposes the capital sentence?

3. Using the voters2 data (voters2.sav) to examine the relationships of voting labour
(vote) and other variables SEX, AGE and any other that you think relevant.
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