
1

Session 7

Log-linear Models

              page

Multi-way Tables       7-6

Example 1       7-8

Interpretation of Parameters        7-12

Continuous Covariates       7-13

SPSS commands for Log-Linear Models       7-14

Practical Session 7: Log-Linear Models       7-15



2

Session 7: Log-Linear Models

The analysis of multi-way contingency tables is based on log-linear models. In
order to develop this theory, consider the simpler situation of a two-way tables
as produced by a cross-tabulation of SEX by LIFE (GSS91 data).

Respondent's Sex * Is Life Exciting or Dull Crosstabulation

213 200 12 425
188.2 219.0 17.8 425.0

50.1% 47.1% 2.8% 100.0%

221 305 29 555
245.8 286.0 23.2 555.0

39.8% 55.0% 5.2% 100.0%

434 505 41 980
434.0 505.0 41.0 980.0

44.3% 51.5% 4.2% 100.0%

Count
Expected Count
% within
Respondent's Sex
Count
Expected Count
% within
Respondent's Sex
Count
Expected Count
% within
Respondent's Sex

Male

Female

Respondent's
Sex

Total

Exciting Routine Dull
Is Life Exciting or Dull

Total

Chi-Square Tests

11.994a 2 .002
12.109 2 .002

11.973 1 .001

980

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 17.78.

a. 

We might ask how were these results derived?

Firstly, we make the assumption that the two variables are independent. This
means that we are assuming that the probability of a response to LIFE is the
same for both sexes, so that the probability of being in a particular cell, e.g.
SEX=1 and LIFE=2 can be found by multiplying together the probability that
SEX=1 and the probability that LIFE=2 (for both sexes). Knowing the total
sample size, we can then work out the expected cell frequency counts. We
measure the discrepancy between the observed and expected cell counts
using the general principle of Deviance based on the Likelihood. The
statistical distribution of the cell counts is the Multinomial distribution, which is
a generalisation of the Binomial distribution. It truns out that, mathematically,
we get exactly the same results if we assume the cell counts have the
Poisson distribution. This Deviance measure is tested using the Chi-squared
distribution following general theory. A modified version due to Karl Pearson is
often referred to as the chi-squared goodness-of-fit statistic.
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How do we express this as a statistical model?

Consider the model for the cell probabilities:

p( SEX=i, LIFE=j ) = p( SEX=i ) � p( LIFE=j )

So, for p( SEX=1 (male), LIFE=2 (routine) ) we need p( SEX=1 ) and p(
LIFE=2 ).

On the basis of the sample we see that we can estimate p( SEX=1 ) by
425/980=0.434 as the proportion of males in the sample. Similarly, we can
estimate p( LIFE=2 ) by 505/980=0.515. This is based on the assumption that
it is the same for males and females, i.e. that it is independent of SEX.

Thus, we can now estimate p( SEX=1, LIFE=2 ) by 0.434 � 0.515 = 0.2235 .

The expected count in the cell would then be 0.2235 � 980 = 219.0 (see
SPSS output).

This is carried out for each cell of the table and the observed counts are
compared to these expected counts using some definition of Loss. The
Deviance loss function is referred to as Likelihood Ratio. The form of this
loss function is derived from the assumption that the counts have the
Multinomial distribution. Following the general theory this has approximate
distribution given by the Chi-squared distribution. Testing the value of this
Loss is a test of our assumption of independence. The modified version of
this, due to Pearson, is also given. The advantage of the Pearson version is
that the approximate Chi-squared assumption holds more accurately when
expected counts are small. The approximation can become unreliable when
expected counts become very small (e.g. close 1). We may be forced to
amalgamate categories to increase these small expected counts.

We can see that the model for p( SEX=i, LIFE=j ) is a simple multiplicative
model. We can turn it into a simple additive model by taking logs:

log p( SEX=i, LIFE=j ) = log p( SEX=i ) + log p( LIFE=j )
  =   ai       +   bj

We have seen how to deal with such models using Factors in General Linear
Models. Thus, on a log scale the model is linear and is often referred to as a
log-linear model. In this form the parameters are the logs of the probabilities
so are more difficult to interpret immediately.

Thus, we can see that this is an example of a simple non-linear model with a
particular Loss function derived from the Multinomial distribution and thus fits
into our general description of a Statistical Model.

These models are fitted through the module:
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Analyze
LogLinear

General

Select the categorical variables as Factors.

Open the Model dialog box:

The default is Saturated, switch to Custom and build a model in the usual
way.
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Also the default output includes tables and plots of residuals, which are not
usually needed until a final model has been selected. Switch these off in the
Options dialog. If parameter estimates are required switch this on in the
Options dialog.

General Loglinear

Table Information

Observed Expected
Factor Value Count % Count %

LIFE Exciting
 SEX Male 213.00 ( 21.73) 188.21 (19.21)
 SEX Female 221.00 (22.55) 245.79 (25.08)

LIFE Routine
 SEX Male 200.00 ( 20.41) 219.01 ( 22.35)
 SEX Female 305.00 ( 31.12) 285.99 ( 29.18)

LIFE Dull
 SEX Male 12.00 (1.22) 17.78 (1.81)
 SEX Female 29.00 (2.96) 23.22 (2.37)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Goodness-of-fit Statistics

Chi-Square DF Sig.

Likelihood Ratio 12.1095 2 .0023
         Pearson 11.9941 2 .0025

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Correspondence Between Parameters and Terms of the Design

Parameter Aliased Term

        1 Constant
        2 [LIFE = 1]
        3 [LIFE = 2]
        4    x [LIFE = 3]
        5 [SEX = 1]
        6    x [SEX = 2]

Note: 'x' indicates an aliased (or a redundant) parameter.
      These parameters are set to zero.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Parameter Estimates

Asymptotic 95% CI
Parameter Estimate SE Z-value Lower Upper

        1 3.1450 .1586 19.83 2.83 3.46
        2 2.3595 .1633 14.45 2.04 2.68
        3 2.5110 .1623 15.47 2.19 2.83
        4 .0000 . . . .
        5 -.2669 .0645 -4.14 -.39 -.14
        6 .0000 . . . .

Multi-way Tables

With this formulation we can generalise it to model multi-way contingency
tables. The simplest model would assume all Factors are independent of each
other leading to more additive terms in the log-linear model. We can then
build more complex models by adding interaction terms between pairs of
Factors allowing for the non-independence of these Factors.

Examples:

A + B + C A, B and C are mutually independent

A + B*C A is independent of B and C, B is dependent on C

A*B + B*C A is dependent on B, and C is dependent on B, but
there is no direct dependence of A on C

This last example is very important and can be expressed as “A and C are
conditionally independent given B”. The practical importance of this is that if
we wish to predict A we need only know B, C is irrelevant. However, if we
considered just the two-way table A � C we may well get a statistically
significant association due to the mutual dependence of A and C on B. This is
analogous to spurious correlation in Normal regression models. Thus it is
important when we have many factors that are apparently inter-related that we
separate the direct associations from the indirect (spurious) associations. This
we can only do by considering models for the multi-way tables.

Even more complex interactions between triples of Factors can be added,
allowing for more complex inter-relationships. Interpretation of parameter
values becomes increasingly complicated. For example, the two-way
interaction parameters are equivalent to log odds-ratios, which can be
transformed back to odds and odds-ratios.

While quantitative interpretation of interactions may be difficult, qualitative
insight may be gained by simply testing for the presence of significant
interactions. The absence of an interaction will mean a simplification in the
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inter-relationships. For complex models a Graphical representation can be
very helpful.

The represents the model: A + B + C + D + E + A*B + B*C + B*E + C*D + D*E

The rule for drawing this graphical representation is simple: The circles
represent the factors and we connect factors if they have an interaction.
The interpretation of the graph is also simple: By considering “routes” from
one node to another along the connecting lines we can derive conditional
independence’s.
For example, consider all routes from all nodes to A. We see that they must
go through node B. This can be interpreted as: A is conditionally
independent of C, D and E given B. The practical interpretation of this is
that, to predict A we need only know the value of B, all other information is
superfluous.

Searching for the simplest model that adequately represents the data can be
laborious. For example, with 5 factors there are 32 possible models to test.
Stepwise procedures can be used to step through each interaction in turn
removing those that are not significant.

In SPSS we can use a stepwise model selection procedure through

Analyze
Loglinear

Model Selection…

In this procedure we can only select Factors (note you will have to provide
the range of factor levels for each factor).

The only procedure is Backward Selection. The default starting point is the
saturated model, use the Model dialog to change this.

By default the maximum number of steps is set to 10, you may need to
increase this for complex models.

B

A

E

D

C
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Example 1

The datafile vote.sav contains data on the voting intentions (only Labour vs
Conservative recorded) of a sample of people and their CLASS, SEX and
AGE (grouped). However, this data is already in aggregate form, that is the
original data has been cross-tabulated and only the cell frequencies (freq)
retained. Below is a portion of the data:

In order to analyze such data correctly we must declare FREQ as a Weight
Cases variable, as follows:

Data � Weight Cases
Weight Cases by select FREQ

Now we proceed with Log-linear analysis

Analyze � Loglinear � General…

Factors = class age sex vote
Model = age class sex vote

Goodness-of-fit Statistics

Chi-Square DF Sig.

Likelihood Ratio 234.2176 51 3.E-25
Pearson 222.1450 51 3.E-23

Thus these factors are clearly not independent.
If we now include a VOTE by CLASS interaction:

Factors = class age sex vote
Model = age class sex vote vote*class
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Goodness-of-fit Statistics

                    Chi-Square DF Sig.

Likelihood Ratio 82.8230 49 .0018
         Pearson 75.0415     49 .0098

Then the Likelihood Ratio Chi-Square has reduced from 234.22 to 82.82, a
difference of 152.4 on 2 degrees of freedom. This is highly significant (though
we do not get this information from SPSS) and indicates that the
VOTE*CLASS interaction is significant. However, we cannot rely on this
without testing all the other possible interactions.

We will use Model Selection to search for the simplest relationship.

Analyze � Loglinear � Model Selection…

Factors = class(1 3) age(1 5) sex(1 2) vote(1 2)
Model = saturated

* * * * * * * *  H I E R A R C H I C A L   L O G   L I N E A R  * * *

Tests that K-way and higher order effects are zero.

K DF L.R. Chisq Prob Pearson Chisq Prob Iteration

4 8 8.086 .4251 8.186 .4155 4
3 30 39.493 .1151 36.038 .2069 4
2 51 234.218 .0000 222.145 .0000 2
1 59 882.822 .0000 985.052 .0000 0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Tests that K-way effects are zero.

K DF L.R. Chisq Prob Pearson Chisq Prob Iteration

1 8 648.604 .0000 762.907 .0000 0
2 21 194.725 .0000 186.107 .0000 0
3 22 31.407 .0881 27.852 .1806 0
4 8 8.086 .4251 8.186 .4155 0

Backward Elimination (p = .050) for DESIGN 1 with generating class

  CLASS*AGE*SEX*VOTE
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 Likelihood ratio chi square =      .00000    DF = 0  P = 1.000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

If Deleted Simple Effect is DF L.R. Chisq Change  Prob  Iter

 CLASS*AGE*SEX*VOTE              8 8.086 .4251    4

Step 1
  The best model has generating class

      CLASS*AGE*SEX
      CLASS*AGE*VOTE
      CLASS*SEX*VOTE
      AGE*SEX*VOTE

  Likelihood ratio chi square =     8.08611    DF = 8  P =  .425

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter

 CLASS*AGE*SEX 8 3.158 .9240 3
 CLASS*AGE*VOTE 8 17.195 .0281 4
 CLASS*SEX*VOTE 2 2.056 .3577 4
 AGE*SEX*VOTE 4 6.153 .1880 3

Step 2
  The best model has generating class

      CLASS*AGE*VOTE
      CLASS*SEX*VOTE
      AGE*SEX*VOTE

  Likelihood ratio chi square =    11.24431    DF = 16  P =  .794

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter

 CLASS*AGE*VOTE 8 17.958 .0215 3
 CLASS*SEX*VOTE 2 1.550 .4608 3
 AGE*SEX*VOTE 4 8.004 .0914 3
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Step 3
  The best model has generating class

      CLASS*AGE*VOTE
      AGE*SEX*VOTE
      CLASS*SEX

  Likelihood ratio chi square =    12.79409    DF = 18  P =  .804

.... more steps

Step 6
  The best model has generating class

      CLASS*AGE*VOTE
      SEX*VOTE

  Likelihood ratio chi square =    22.91803    DF = 28  P =  .737

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter

 CLASS*AGE*VOTE 8 18.281 .0192 4
 SEX*VOTE 1 10.890 .0010 2

The final model has generating class

    CLASS*AGE*VOTE
    SEX*VOTE

 Goodness-of-fit test statistics

Likelihood ratio chi square = 22.91803 DF = 28 P =  .737
             Pearson chi square = 22.18494 DF = 28 P =  .773

Thus non-significant interaction terms are removed one at a time until all
those left are significant. For this data the final model is:

VOTE*SEX + VOTE*CLASS*AGE

Thus the relation of VOTE to CLASS and AGE requires a three-way
interaction, indicating that the relation of voting preference to AGE is not the
same in each CLASS. However SEX only enters as a two-way interaction with
VOTE, indicating that gender differences in voting preference are the same
for all AGE groups and CLASS groups.
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Interpretation of Parameters

Having used Model Selection to decide on a suitable model we must refit
using General to obtain details such as parameter estimates.

Here is the editted output from the analysis of the VOTE data.

GENERAL LOGLINEAR ANALYSIS

Design: Constant + AGE + CLASS + SEX + VOTE + SEX*VOTE +
CLASS*AGE*VOTE

Parameter Aliased Term
1 Constant
12 [VOTE = 1]
13 x [VOTE = 2]
14 [SEX = 1]*[VOTE = 1]
15 x [SEX = 1]*[VOTE = 2]
16 x [SEX = 2]*[VOTE = 1]
17 x [SEX = 2]*[VOTE = 2]

(+more lines)

Chi-Square DF Sig.
Likelihood Ratio 22.9198 28 .7370

Parameter Estimate SE Z-value
        1 3.4387 .1295 26.56
       12 -.5566 .2220 -2.51
       14 -.3732 .1133 -3.29

(+more parameters)

As this is a log-linear model the main effect parameters are differences in
log-probabilities, which are related to odds. Consider AGE group 5 ( <26 )
and CLASS 3 ( Working ). Then for females we compute the odds of
Conservative versus Labour as:

odds Cons:Lab = exp(-0.5566) : 1 = 0.573 : 1

which can be converted to probabilities: (0.573/1.573, 1/1.573) =
(0.364,0.636)

For males we have:

odds Cons:Lab = exp(-0.5566 – 0.3732) : 1 = 0.395 : 1
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which are equivalent to probabilities (0.283,0.717)

The ratio of the odds for males to females = 0.395/0.573 = 0.689 = exp(-
0.3732)

Thus from the interaction parameter (-0.3732) we can get a direct
interpretation in terms of an odds ratio = 0.689. Since SEX only occurs in this
model in the interaction VOTE*SEX this odds ratio is constant for all ages and
classes. Thus the odds for voting Conservative are about 31% less for males
of all ages and class.

The qualitative interpretation is straightforward. The interaction parameter for
male and Conservative is negative indicating that the probability of voting
Conservative is lower for males. A useful rule-of-thumb is that the maximum
change in probability (occurring with probabilities around 0.5) is the interaction
parameter divided by 4, i.e. about –0.1 in our example. This approximate
result is accurate for values of the parameter between �1.

Continuous Covariates

Interactions involving continuous covariates can be built and included as
terms in a log-linear model. The covariate is specified as a Cell Covariate
and can then be used in the Model specification.

The interaction is then modelled as a “trend” with respect to this covariate.
Such models are closely related to logistic regression models. In fact, for a
binary dependent variable the two ways of specifying the model are exactly
equivalent.

General Loglinear

Covariates:   XAGE     (copy of AGE values)

 Model: AGE + CLASS + SEX + VOTE + CLASS*VOTE + SEX*VOTE +
VOTE*XAGE

Correspondence Between Parameters and Terms of the Design

Parameter Aliased Term

       14 [CLASS = 1]*[VOTE = 1]
       20 [SEX = 1]*[VOTE = 1]
       24 [VOTE = 1]*XAGE

Goodness-of-fit Statistics
Chi-Square DF Sig.

Likelihood Ratio 51.9665 47 .2866
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Asymptotic 95% CI
Parameter Estimate SE Z-value Lower Upper

       14 1.6497 .1674 9.85 1.32 1.98
       16 1.2893 .1510 8.54 .99 1.59

       20 -.3732 .1133 -3.29 -.60 -.15

       24 -.0156 .0035 -4.42 -.02 -8.690E-03

Logistic Regression (Dependent = VOTE)

SPSS commands for Log-Linear Models

Loglinear
General

Fits general loglinear models.  Continuous covariates included as Cell
Covariates
Build model through Model dialog box, specifying interactions in usual way.
Parameter estimates requested in Options, store predicted values through
Save.

Loglinear
Model Selection

Allows backward stepwise procedures to select model. Only Factors allowed.
Starting model defined in Model dialog box. Can  specify model as All n-way
interactions.

Parameter Estimates

.394 .202 3.807 1 .051
1.659 .170 95.832 1 .000 5.256
1.309 .153 72.922 1 .000 3.702

0a . . 0 . .
-.411 .122 11.406 1 .001 .663

0a . . 0 . .
-.016 .004 17.965 1 .000 .984

Intercept
[CLASS=1]
[CLASS=2]
[CLASS=3]
[SEX=1]
[SEX=2]
XAGE

VOTE
Conservative

B Std. Error Wald df Sig. Exp(B)

This parameter is set to zero because it is redundant.a. 
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Parameter estimates are not available.

Loglinear
Logit

Fits Logistic models via the equivalent log-linear model.
Need to take care in specifying the model to get expected results.
Continuous covariates specifed as Cell Covariates.
Saved predicted values are expected cell counts not predicted probabilities.

Regression
Multinomial Logistic

Fits generalised Logistic models for multi-category data.
Factors and Covariates specified as in General Linear Models and terms built
in the same way through Model.
Predicted probabilities can be displayed through Statistics but cannot be
saved.

Regression
Binary Logistic

If one of the categorical variables is Binary and is taken as the dependent
variable gives results equivalent to specific log-linear model.
Model specification more cumbersome, Factors have to be included then
declared as Categorical.
Predicted probabilities can be Saved.

Practical Session 7: Log-Linear Models

Using the STATLAB data (statlaba.sav)

1. Examine the interactions (associations) between MTE, MTO, FTE and
MTO.
(i)  Firstly by specifying models and comparing them.
(ii)  Secondly, using the model selection procedure to find the “best” model.

Using the BSAS data (bsas91.sav)

2.  The interaction between PRSOCCL and SRSOCCL is a social mobility
effect.
      Does this effect differ between males and females?

3.  There is a strong association between HEDQUAL and PRSOCCL. Does
this vary with RSEX?
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