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Course topics

◮ random effects

◮ linear mixed models

◮ statistical inference for linear mixed models (including analysis
of variance)

◮ prediction of random effects

◮ Implementation in R and SPSS
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Outline

◮ examples of data sets

◮ random effects models - motivation and interpretation

Next session : details on implementation in R and SPSS
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Reflectance (colour) measurements for samples of
cardboard (egg trays) (project at Department of
Biotechnology, Chemistry and Environmental Engineering)

Four replications at same
position on each cardboard
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For five cardboards: four
replications at four positions at
each cardboard
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Colour variation between/within cardboards ?
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Orthodontic growth curves (repeated
measurements/longitudinal data)

Distance (related to jaw size) between pituitary gland and the
pterygomaxillary fissure (two distinct points on human skull) for
children of age 8-14

Distance versus age:
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Orthodontic growth curves (repeated
measurements/longitudinal data)

Distance (related to jaw size) between pituitary gland and the
pterygomaxillary fissure (two distinct points on human skull) for
children of age 8-14

Distance versus age:
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Distance versus age grouped
according to child
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Different intercepts for different children !
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Recall: basic aim for statistical analysis of a sample/dataset is to
extract information that can be generalized to the population that
was sampled.

This perspective in mind when deciding on models for the datasets
considered.
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Model for reflectances: one-way anova

Four replications on each
cardboard
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Models:

Yij = µ+ǫij i = 1, . . . , k j = 1, . . . ,m

(k = 34, m = 4) where µ
expectation and ǫij random
independent noise
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Model for reflectances: one-way anova

Four replications on each
cardboard
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Models:

Yij = µ+ǫij i = 1, . . . , k j = 1, . . . ,m

(k = 34, m = 4) where µ
expectation and ǫij random
independent noise or

Yij = µ+ αi + ǫij

where αi are fixed unknown
parameters
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Model for reflectances: one-way anova

Four replications on each
cardboard
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Models:

Yij = µ+ǫij i = 1, . . . , k j = 1, . . . ,m

(k = 34, m = 4) where µ
expectation and ǫij random
independent noise or

Yij = µ+ αi + ǫij

where αi are fixed unknown
parameters or

Yij = µ+ Ui + ǫij

where Ui are zero-mean random
variables independent of each other
and of ǫij

Which is most relevant ? 10 / 38

One role of random effects: parsimonious and population
relevant models

With fixed effects αi : many parameters (µ, σ2, α2, . . . , α34).
Parameters α2, . . . , α34 not interesting as they just represent
intercepts for specific card boards which are individually not of
interest.

With random effects: just three parameters (µ, σ2 = Varǫij and
τ2 = VarUi ).

Hence parsimonious model. Variance parameters interesting for
several reasons.
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Second role of random effects: quantify sources of variation

Quantify sources of variation (e.g. quality control): is pulp for
paper production too heterogeneous ?

With random effects model

Yij = µ+ Ui + ǫij

we have decomposition of variance:

VarYij = VarUi + Varǫij = τ2 + σ2

Hence we can quantify variation between (τ2) cardboard pieces
and within (σ2) cardboard.
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Ratio γ = τ2/σ2 is ‘signal to noise’.

Proportion of variance

τ2

σ2 + τ2
=

γ

γ + 1

is called intra-class correlation.

High proportion of between cardboard variance leads to high
correlation (next slide).
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Third role: modeling of covariance and correlation

Covariances:

Cov[Yij ,Yi ′j ′ ] =





0 i 6= i ′

VarUi i = i ′, j 6= j ′

VarUi + Varǫij i = i ′, j = j ′

Correlations:

Corr[Yij ,Yi ′j ′ ] =





0 i 6= i ′

τ2/(σ2 + τ2) i = i ′, j 6= j ′

1 i = i ′, j = j ′

That is, observations for same cardboard are correlated !

Correct modeling of correlation is important for correct evaluation
of uncertainty.
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Fourth role: correct evalution of uncertainty
Suppose we wish to estimate µ = EYij . Due to correlation,
observations on same cardboard to some extent redundant.

Estimate is empirical average µ̂ = Ȳ··. Evaluation of VarȲ··:

Model erroneously ignoring
variation between cardboards

Yij = µ+ ǫij

Varǫij = σ2
total

[
= σ2 + τ2

]

Naive variance expression is

VarȲ·· =
σ2
total

n

[
=

σ2 + τ2

mk

]

Correct model with random
cardboard effects

Yij = µ+ Ui + ǫij ,

VarUi = τ2, Varǫij = σ2

Correct variance expression is

VarȲ·· =
τ2

k
+

σ2

mk

With first model, variance is underestimated !

For VarȲ·· → 0 is it enough that mk → ∞ ?
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Classical balanced one-way ANOVA (analysis of variance)
Decomposition of empirical variance/sums of squares (i = 1, . . . , k ,
j = 1, . . . ,m):

SST =
∑

ij

(Yij−Ȳ··)2 =
∑

ij

(Yij−Ȳi ·)2+m
∑

i

(Ȳi ·−Ȳ··)2 = SSE+SSB

Expected sums of squares:

ESSE = k(m − 1)σ2

ESSB = m(k − 1)τ2 + (k − 1)σ2

Moment-based estimates:

σ̂2 =
SSE

k(m − 1)
τ̂2 =

SSB/(k − 1)− σ̂2

m

More complicated formulae in the unbalanced case.
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Hypothesis tests

Fixed effects: H0: α1 = α2 = · · · = αk

F =
SSB/(k − 1)

SSE/(k(m − 1))

Random effects: H0: τ
2 = 0 Same test-statistic

F =
SSB/(k − 1)

SSE/(k(m − 1))

Idea: if τ2=0 then ESSB/(k − 1) = ESSE/(k(m − 1)).
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Classical implementation in R

For cardboard/reflectance data, k = 34 and m = 4. anova()
procedure produces table of sums of squares.

> anova(lm(Reflektans~factor(Pap.nr.)))

Analysis of Variance Table

Response: Reflektans

Df Sum Sq Mean Sq F value

factor(Pap.nr) 33 0.9009 0.0273 470.7 #SSB

Residuals 102 0.0059 0.00006 #SSE

---

Hence σ̂2 = 0.00006, τ̂2 = (0.0273− 0.00006)/4 = 0.00681.

Biggest part of variation is between cardboard.
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Orthodontic data: classical multiple linear regression in R

#fit model with sex specific intercepts and slopes

> ort1=lm(distance~age+age:factor(Sex)+factor(Sex))

> summary(ort1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.3406 1.4162 11.538 < 2e-16 ***

age 0.7844 0.1262 6.217 1.07e-08 ***

factor(Sex)Female 1.0321 2.2188 0.465 0.643

age:factor(Sex)Female -0.3048 0.1977 -1.542 0.126

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.257 on 104 degrees of freedom

Multiple R-squared: 0.4227,Adjusted R-squared: 0.4061

F-statistic: 25.39 on 3 and 104 DF, p-value: 2.108e-12

Sex and age:Sex not significant !
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Multiple linear regression continued - without interaction

> ort2=lm(distance~age+factor(Sex))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.70671 1.11221 15.920 < 2e-16 ***

age 0.66019 0.09776 6.753 8.25e-10 ***

factor(Sex)Female -2.32102 0.44489 -5.217 9.20e-07 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’

Residual standard error: 2.272 on 105 degrees of freedom

Multiple R-squared: 0.4095,Adjusted R-squared: 0.3983

F-statistic: 36.41 on 2 and 105 DF, p-value: 9.726e-13

both age and sex significant
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Multiple linear regression in R III

#plot data and two regression lines

col=rep("blue",length(Sex))

col[Sex=="Female"]="red"

plot(distance~age,col=col)

abline(parm[1:2],col="blue")

abline(c(parm[1]+parm[3],parm[2]),col="red")
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Multiple linear regression in R IV

res=residuals(ort2)

hist(res)

Histogram of res
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fittedval=fitted(ort2)

plot(res~fittedval)

21 22 23 24 25 26 27

−
6

−
4

−
2

0
2

4

fittedval

re
s

22 / 38

Multiple linear regression in R V

> library(lattice)

> xyplot(res~Subject,groups=Subject)

Subject
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Oups - residuals not independent
and identically distributed !
Hence computed F -tests not
valid.

Problem: subject specific
intercepts (and possibly subject
specific slopes too)
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Model with subject specific intercepts

> ortss=lm(distance~Subject+age+age:factor(Sex)+factor(Sex))

> summary(ortss)

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.7611 0.6697 25.028 < 2e-16 ***

Subject.L 6.8893 2.9857 2.307 0.02365 *

Subject.Q 0.1675 0.9825 0.170 0.86507

Subject.C 2.7670 1.1527 2.400 0.01873 *

Subject^4 2.8589 0.9497 3.010 0.00350 **

Subject^5 -0.2532 0.7896 -0.321 0.74930

Subject^6 -1.7999 0.8988 -2.003 0.04865 *

Subject^7 0.4857 0.6986 0.695 0.48893

Subject^8 2.4339 0.8380 2.904 0.00477 **

...

Subject^20 -1.3058 0.7276 -1.795 0.07653 .

Subject^21 0.3881 0.6934 0.560 0.57725

Subject^22 2.0115 0.7296 2.757 0.00724 **

Subject^23 1.7772 0.7366 2.413 0.01816 *

Subject^24 -0.7753 0.7025 -1.104 0.27306

Subject^25 1.4231 0.7133 1.995 0.04948 *

Subject^26 -2.1068 0.7292 -2.889 0.00498 **

age 0.7844 0.0775 10.121 6.44e-16 ***

factor(Sex)Female NA NA NA NA

age:factor(Sex)Female -0.3048 0.1214 -2.511 0.01410 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.386 on 79 degrees of freedom

Multiple R-squared: 0.8345,Adjusted R-squared: 0.7759

F-statistic: 14.23 on 28 and 79 DF, p-value: < 2.2e-16
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For each subject an estimate of deviation between the subject’s
intercept and the first subject’s intercept.

In total 27 (!) subject specific estimates.

Each estimate pretty poor (only 4 observations for each subject).

Can not estimate female effect !

Model with subject specific effects may be more correct but is it
useful ?
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Mixed model for growth data

Yij = α+ δsex(i) + βxij + ai + bixij + ǫij , i : child, j : time

Models for coefficients:

◮ If interest lies in mean intercept and slope (α, β) and sex
difference δs but not individual subjects then wasteful to
include subject specific fixed effects ai and bi (want
parsimonious models).

◮ Using random effects ai and bi with variances τ2a and τ2b
allows quantification of population heterogeneity. And only
unknown parameters α, β, δs , τ

2
a , τ

2
b and σ2 (do not need to

estimate ai and bi )

Back to first role of random effects: parsimonious and meaningful
modeling of heterogeneous data. Mixed model: both systematic
and random effects.
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Marginal and conditional means of observations

Suppose ai ∼ N(0, τ2a ) and bi ∼ N(0, τ2b )

Unconditional (marginal) mean of observation:

E[Yij ] = α+ δsex(i) + βageij

- i.e. one regression line for each sex (population mean of subject
specific lines).

Conditional on ai and bi :

E[Yij |ai , bi ] = [α+ ai ] + δsex(i) + [β + bi ]ageij

i.e. subject specific lines vary randomly around population mean.
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Mixed model analysis of orthodont data

> ort4=lmer(distance~age+Sex+(1|Subject))

> summary(ort4)

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 3.2668 1.8074

Residual 2.0495 1.4316

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error t value

(Intercept) 17.70671 0.83391 21.233

age 0.66019 0.06161 10.716

SexFemale -2.32102 0.76139 -3.048

Between subject variance: 3.27, Noise variance: 2.05.

Both age and Sex significant according to Wald-tests (approximate
normality of t-values).
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Comparison of variances

Total variance: 3.27+2.05=5.32

Similar to estimated residual variance for multiple linear regression
model: 5.26 = 2.2722.
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Looking at interaction in mixed model framework

Formula: distance ~ age * Sex + (1 | Subject)

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 3.299 1.816

Residual 1.922 1.386

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error t value

(Intercept) 16.3406 0.9813 16.652

age 0.7844 0.0775 10.121

SexFemale 1.0321 1.5374 0.671

age:SexFemale -0.3048 0.1214 -2.511

Now interaction significant (p=0.012) assuming t-value
approximately normal.

What is interpretation of interaction ? Does it make sense ?
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Note: corresponding model without random effects has much
inflated residual variance 5.09 = 2.2572 vs. 1.922 for mixed model.

Interaction ‘drowns’ in large random noise.
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Summary - role of random effects

Models with random effects (mixed models) are useful for:

◮ quantifying different sources of variation

◮ appropriate modeling of variance structure and correlation

◮ correct evalution of uncertainty of parameter estimates

◮ estimation of population variation instead of subject specific
characteristics

◮ more parsimonious models (one variance parameter vs. many
subject specific fixed effects parameters)
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Exercises

1. Show results regarding covariances and correlations (slide 14)
for the Yij in one-way ANOVA (i.e. the model on slide 12).

2. Analyze the pulp data (brightness of paper pulp in groups
given by different operators; from the faraway package) using
a one-way anova with random operator effects. Estimate
variance components and the intra-class correlation (you may
also use output on next slide).
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One-way anova for pulp data (4 operators, 5 observations for each
operator):

> anova(lm(bright~operator,data=pulp))

Analysis of Variance Table

Response: bright

Df Sum Sq Mean Sq F value Pr(>F)

operator 3 1.34 0.44667 4.2039 0.02261 * #SSB

Residuals 16 1.70 0.10625 #SSE

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’
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More exercises

3. compute variances, covariances and correlations of
observations from the linear model with random intercepts:

Yij = α+ ai + βxij + ǫij

where ǫij ∼ N(0, σ2) and ai ∼ N(0, τ2a ) and the ǫij and ai are
independent.

4. Continuation of previous exercise. Consider the model fitted
on slide 28. What is the proportion of variance due to the
error (residual) term ?
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5. 5.1 Compute variances, covariances and correlations of
observations from the linear model with random slopes:

Yij = α+ [β + bi ]xij + ǫij

where ǫij ∼ N(0, σ2) and bi ∼ N(0, τ 2b ) and the ǫij and bi are
independent.

5.2 Consider output on next slide. What is the proportion of
variance for an observation Yij explained by the random slopes
for different values 8, 10, 12, and 14 of age ?
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> ort5=lmer(distance~age+Sex+(-1+age|Subject))

> summary(ort5)

Random effects:

Groups Name Variance Std.Dev.

Subject age 0.026374 0.1624

Residual 2.080401 1.4424

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error t value

(Intercept) 17.43042 0.75066 23.220

age 0.66019 0.06949 9.500

SexFemale -1.64286 0.68579 -2.396
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6. compute VarȲ·· for one way ANOVA (slide 15).

7. compute the expectations of SSB and SSE in one-way
ANOVA (without loss of generality you may assume µ = 0
since µ cancels out in the sums of squares).

8. (Design of experiment - one-way ANOVA) Suppose Yij is
outcome of jth experiment in ith lab, τ2 = 1 variance
between labs and σ2 = 3 measurement variance.

8.1 Suppose we want to make in total 100 experiments. What is
then the optimal number of labs that makes VarȲ·· minimal?

8.2 Suppose instead we have available 5000 kr., there is an initial
cost of 200 kr. for each lab and subsequently 10 kr. for each
experiment. What is then the optimal number k of labs that
gives the smallest VarȲ·· ?
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