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Outline

I Logistic regression

I Poisson regression



Binary and count data

Linear mixed models very flexible and useful model for continuous
response variables that can be well approximated by a normal
distribution.

If the response variable is binary a normal distribution is clearly
inappropriate.

For count response variables normal distribution may be OK
approximation if counts are not too small. However this not so for
small counts.

Also problem with variance heterogeneity: typically larger variances
for larger counts.

This lecture: regression models for binary and count data.



Example: o-ring failure data
Number of damaged O-rings (out of 6) and temperature was
recorded for 23 missions previous to Challenger space shuttle
disaster.

Proportions of damaged O-rings
versus temperature and least
squares fit:
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Problems with least squares fit:

I predicts proportions outside
[0, 1].

I assumes variance
homogeneity (same precision
for all observations).

I proportions not normally
distributed.



Modeling of o-ring data

Number of damaged o-rings is a count
variable but restricted to be between 0
and 6 for each mission. Hence Poisson
distribution not applicable (a Poisson
distributed variable can take any value
0, 1, 2, . . .).

Poisson with mean 3
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To jth ring for ith mission we may associate binary variable Iij
which is one if ring defect and zero otherwise.

We assume the Iij independent with pi = P(Iij = 1) depending on
temperature.

Then Yi =
∑6

j=1 Iij follows a binomial b(6, pi ) distribution.



Binomial model for o-ring data

Yi number of failures and ti temperature for ith mission.

Yi ∼ b(6, pi ) where pi probability of failure for ith mission.

Model for variance heterogeneity:

VarYi = nipi (1− pi )

How do we model dependence of pi on ti ?

Linear model:
pi = α + βti

Problem: pi not restricted to [0, 1] !



Logistic regression

Consider logit transformation:

η = logit(p) = log(
p

1− p
)

where
p

1− p

is the odds of an event happening with probality p.

Note: logit injective function from [0, 1] to R. Hence we may apply
linear model to η and transform back:

η = α + βt ⇔ p =
exp(α + βt)

exp(α + βt) + 1

Note: p now guaranteed to be in [0, 1]



Plots of logit and inverse logit functions
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Logistic regression and odds

Odds for a failure in ith mission is

oi =
pi

1− pi
= exp(ηi )

and odds ratio is

oi
oj

= exp(ηi − ηj) = exp(β(ti − tj))

Example: to double odds we need

2 = exp(β(ti − tj))⇔ ti − tj = log(2)/β

Example: exp(β) is increase in odds ratio due to unit increase in t.



Estimation

Likelihood function for simple logistic regression
logit(pi ) = α + βxi :

L(α, β) =
∏
i

pyii (1− pi )
ni−yi

where

pi =
exp(α + βxi )

1 + exp(α + βxi )

MLE (α̂, β̂) found by iterative maximization (Newton-Raphson)

More generally we may have multiple explanatory variables:

logit(pi ) = β1x1i + . . .+ βpxpi



Logistic regression in R

> out=glm(cbind(damage,6-damage)~temp,family=binomial(logit))

> summary(out)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.66299 3.29626 3.538 0.000403 ***

temp -0.21623 0.05318 -4.066 4.78e-05 ***

...

Null deviance: 38.898 on 22 degrees of freedom

Residual deviance: 16.912 on 21 degrees of freedom

...

Residual deviance: see later slide.

Note response is a matrix with first rows numbers of damaged and
second row number of undamaged rings.

If we had the separate binary variables Iij in a vector y, say, this
could be used as response instead: y~temp.



Hypothesis testing

Wald test:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.66299 3.29626 3.538 0.000403 ***

temp -0.21623 0.05318 -4.066 4.78e-05 ***

Temperature highly significant.



Same conclusion using likelihood ratio test:

> out2=glm(cbind(damage,6-damage)~1,family=binomial(logit)

> anova(out2,out,test="Chisq")

Analysis of Deviance Table

Model 1: cbind(damage, 6 - damage) ~ 1

Model 2: cbind(damage, 6 - damage) ~ temp

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 22 38.898

2 21 16.912 1 21.985 2.747e-06

(log likelihood ratio approximately χ2 distributed)

(alternatively you may use drop1(out,test="Chisq"))



Another example: radioactive decay

Intensity of radioactive decay: λ(t) = A exp(at)

By theory of physics number of decays Xi in time interval [ti , ti+1[
is a Poisson variable with mean∫ ti+1

ti

λ(t)dt ≈ ∆iλ(ti ) = exp(log ∆i + logA + ati )

where ∆i = ti+1 − ti .

NB: Xi for disjoint intervals independent.

Simulated radioactive decay x0, . . . , x14 within unit intervals
[t, t + 1[, t = 0, 1, 2, . . .:

5 9 5 5 2 1 4 0 0 2 0 0 0 0 1



Naive approach:

logEXi ≈ log 1 + logA + ati = logA + ati , i = 0, 1, 2,

hence fit linear regression to (ti , log xi ).

Problems:

I log transformation of zero counts ?

I variance heterogeneity: larger counts have large variance

I linear model fits model for E logXi but this is different from
logEXi

Better approach: Poisson regression with log link.



Poisson regression
Suppose X1, . . . ,Xn are Poisson distributed with associated
covariates z1, . . . , zn.

Let λi > 0 denote expectation of Xi . We might try linear model

λi = α + βzi

but this may conflict with the requirement λi > 0.

Better alternative is log-linear model

λi = exp(α + βzi )

since this guarantees λi > 0.

Variance heterogeneity: for a Poisson variable, the variance is equal
to the expectation:

VarXi = EXi = λi .



Implementation in R - linear model

> radiols=lm(log(x+0.001)~offset(log(deltat))+times)

> summary(radiols)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.1969 1.5489 1.418 0.17961

times -0.6152 0.1883 -3.267 0.00612 **

True logA and a are 2.08 and −0.3.



Implementation in R - Poisson regression model

> radiofit=glm(x~offset(log(deltat))+times,family=poisson(log))

> summary(radiofit) #offset to take into account lengths of time intervals

... #which may in general differ from 1

Min 1Q Median 3Q Max

-1.5955 -1.0093 -0.7251 0.8709 1.5391

...

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.08130 0.23835 8.732 < 2e-16 ***

times -0.26287 0.05464 -4.811 1.5e-06 ***

...

Residual deviance: 17.092 on 13 degrees of freedom

True logA and a are 2.08 and −0.3.



Data and fitted values

plot(times,x)

lines(times,fitted(radiofit))

lines(times,exp(fitted(radiols)),lty=2)

legend(locator(1),lty=c(1,2),legend=c("Poisson regression","least squares"))
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Note problems with least squares fit: follows zeros too closely !



Model assessment for logistic and Poisson regression
I Pearson’s statistic

X 2 =
n∑

i=1

(yi − µ̂i )2

V (µ̂i )

where V (µ) is variance of observation with mean µ (µ = p or
µ = λ, V (p) = np(1− p) or V (λ) = λ).

I Plot Pearson residuals against predicted values and covariates

rPi =
yi − µ̂i√
V (µ̂i )

NB: Pearson’s statistic approximately χ2(n − p) where p number
of parameters - if µi ’s not too small (larger than 5 say).

NB: Pearson residuals not normal - can make interpretation
difficult.

Deviance closely related to Pearson’s statistic but more technical.
Deviance residuals similar to Pearson residuals.



Residuals for o-rings

devres=residuals(out)

plot(devres~temp,xlab="temperature",ylab="residuals",ylim=c(-1.25,4))

pearson=residuals(out,type="pearson")

points(pearson~temp,pch=2)
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Residuals for radioactive decay

plot(residuals(radiofit),ylim=c(-1.6,1.8))

points(residuals(radiofit,type="pearson"),pch=2)
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Much spurious structure due to
discreteness of data.



Generalized linear models

Logistic and Poisson regression special cases of wide class of
models called generalized linear models that can all be analyzed
using the glm-procedure.

We need to specify distribution family and link function.

In practice Binomial/logistic and Poisson/log regression are the
most commonly used examples of generalized linear models.

SPSS: Analyze → Generalized linear models → etc.



Overdispersion

Suppose Pearsons X 2 is large relative to degrees of freedom n − p.

This may either be due to systematic defiency of model
(misspecified mean structure) or overdispersion, i.e. variance of
observations larger than model predicts.

Overdispersion may be due e.g. to unobserved explanatory
variables like e.g. genetic variation between subjects, variation
between batches in laboratory experiments, or variation in
environment in agricultural trials.

There are various ways to handle overdispersion - we will focus on
a model based approach: generalized linear mixed models.



Deviance for logistic regression
Predicted observation for current model:

ŷi = ni p̂i logitp̂i = β̂1x1i + . . .+ β̂pxpi

Saturated model: no restrictions on pi so p̂sati = yi/ni and
ŷ sati = yi (perfect fit).

Residual deviance D is -2 times the log of the ratio between
L(β̂1, . . . , β̂p) and likelihood Lsat for the saturated model.

D = 2
n∑

i=1

[yi log(yi/ŷi ) + (ni − yi ) log((ni − yi )/(ni − ŷi ))]

If ni not too small D ≈ χ2(n − p) where p is the number of
parameters for current model. If this is the case, D may be used
for goodness-of-fit assessment.

Null deviance is log ratio between maximum likelihood for model
with only intercept and Lsat.



Exercises

1. Suppose the probability that the race horse Flash wins is 10%.
What are the odds that Flash wins ?

2. Suppose the that the logit of the probability p is 0,
logit(p) = 0. What is then the value of p ?

3. Consider a logistic regression model with P(X = 1) = p and
logit(p) = 3 + 2z . What are the odds for the event X = 1
when z = 0.5 ? What is the increase in odds if z is increased
by one ?

4. Show that the mean and variance of a binomial variable
Y ∼ b(n, p) are np and np(1− p), respectively.

Hint: use that Y = I1 + I2 + . . . , In where the Ii are
independent binary random variables with P(Ii = 1) = p.



5. Consider the wheezing data (available as data set ohio in the
faraway package or ohio.sav at the course web page).

The variables in the data set are resp (an indicator of wheeze
status, 1=yes, 0=no), id (a numeric vector for subject id), age
(a numeric vector of age, 0 is 9 years old), smoke (an
indicator of maternal smoking at the first year of the study).

Fit a logistic regression model for the binary resp variable with
age and smoke as factors. Check the significance of age and
smoke. Compare with a model with age as a covariate (i.e. a
single slope parameter for age).



6. Consider the epilepsy data (available in the faraway package
or as faraway.sav). The data are from a clinical trial of 59
epileptics. For a baseline, patients were initially observed for 8
weeks and the number of seizures recorded. The patients were
then randomized to treatment by the drug Progabide (31
patients) or to the placebo group (28 patients). They were
then observed for additionally four 2-week periods and the
number of seizures in each period was recorded.

The variables in the data are seizures (number of seizures), id
(identifying number), treat (1=treated group, 0=placebo
group), expind (0=baseline period, 1=treatment period),
timeadj (length of observation period in weeks), age in years.

Fit a Poisson regression to the seizures data in order to
investigate the effect of treatment on the number of seizures.
Use log(timeadj) as an offset to adjust for the different
observation periods (8 or 2 weeks) for the counts. Also
investigate the effect of age.


