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Variance for binomial and Poisson

For binomial and Poisson variables, variance is determined by
mean.

Y binomial b(n, p):

EY = np VarY = np(1 − p)

Binary case, n = 1:

EY = p VarY = p(1 − p)

Y Poisson med middelværdi λ:

EY = λ VarY = λ
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Overdispersion

Binomial and Poisson default models in case of binary and count
data.

In some applications we see larger variability in the data than
predicted by variance formulas for binomial or Poisson.

This is called overdispersion and can be due to correlation in the
data, latent factors, biological heterogeneity, genetics,....

Latent factors can be modeled explicity using random effects - i.e.
mixed models for binary and count data.
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Wheezing data
The wheezing (Ohio) data has variables resp (binary indicator of
wheezing status), id, age (of child), smoke (binary, mother smoker
or not).

Aggregated data: (black=smoke, red=no smoke)
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Let Yij denote wheezing status of ith child at jth age. Assuming
Yij is b(pij , 1) we try logistic regression

logit(pij) = β0 + β1agej + β2smokei

Assuming independence between observations from the same child,
and letting Yi · be the sum of observations from ith child,

VarYi ·

=Var(Yi1 + Yi2 + Yi3 + Yi4) = VarYi1 + VarYi2 + VarYi3 + VarYi4

=pi1(1 − pi1) + pi2(1 − pi2) + pi3(1 − pi3) + pi4(1 − pi4)

Note: same variance of Yi · for all children with same value of
smoke.

We can calculate above theoretical variance from fitted model and
compare with empirical variances.

Smoke=0: theoretical: 0.58 empirical: 1.22.

Smoke=1: theoretical: 0.48 empirical: 0.975
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Issue: observations from same child are correlated - if we know
first observation is non-wheeze then very likely three remaining
observations non-wheeze too.

Correlation can be due to genetics or the environment (more or
less polluted) for the child.

Explicit model these effects using random effect:

logit(pij) = β0 + β1agej + β2smokei + Ui

where Ui are N(0, τ2) and independent among children.

Such a model can be fitted by the R-procedure glmer with syntax
very close related to lmer and glm
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Logistic regression

> fit=glm(resp~age+smoke,family=binomial,data=ohio)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.88373 0.08384 -22.467 <2e-16 ***

age -0.11341 0.05408 -2.097 0.0360 *

smoke 0.27214 0.12347 2.204 0.0275 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

According to above results, age and smoke both significant at the
5% level.
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Mixed model analysis

> fiter=glmer(resp~age+smoke+(1|id),family=binomial,data=ohio)

> summary(fiter)

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 5.491 2.343

Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.37396 0.27496 -12.271 <2e-16 ***

age -0.17677 0.06797 -2.601 0.0093 **

smoke 0.41478 0.28705 1.445 0.1485

Now only age is significant on the 5% level.

Note large variance 5.491 for the Ui .
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Variance 5.491 corresponds to standard deviation 2.343. This
means 95% probability interval for Ui is [−4.686, 4.686].

Large part of the variation explained by the Ui relative to the fixed
effects.
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Poisson regression with random effects

For count data we can also add random effects to the model.

Recall in this case we model the logarithm of the mean λi for ith
observation Yi :

log λi = α + βzi + Ui

Again use glmer but now with family poisson.
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Interpretation of variance components
For linear mixed model we can directly interpret variances of
random effects in terms of proportions of variance and intra-class
correlation for the response variable.

This is not possible for logistic and Poisson mixed models.

E.g. for logistic regression, the variance is

VarYi = Epi (1 − pi ) + Varpi

where the expectation and variance is with respect to Ui in

pi =
exp(α + βzi + Ui )

1 + exp(α + βzi + Ui )

There is no simple formula for this variance.

Here pi (1 − pi ) is the conditional variance of Yi given Ui - but this
can not be evaluated since Ui is unobserved.
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For the Poisson case with

λi = exp(α + βzi + Ui )

we have (complicated) formulae for the mean

EYi = exp(α + βzi + τ2/2)

and variance:

VarYi = EYi

[
exp(α + βzi + 3τ2/2) − exp(α + τ2/2) + 1

]
Note: τ2 not a simple proportion of total variance.

Formula indeed shows that τ2 > 0 gives overdispersion:

VarYi

EYi
= exp(α + βzi + 3τ2/2) − exp(α + τ2/2) + 1 > 1

if τ2 > 0.
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Computation

Due to non-linear relation between mean of observations and
random effects, computation of likelihood is not straightforward.

Huge statistical literature on how to compute good approximations
of the likelihood.

glmer uses numerical integration (adaptive Gaussian quadrature)
and the accuracy is controlled using the argument nAGQ (default is
nAGQ=1).

SPSS use so-called penalized quasi-likelihood based on (very
crude) approximation of likelihood.

For the wheeze data set R and SPSS estimates differ but we get
qualitatively similar results regarding significance of fixed effects.
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Wheeze results with different values of nAGQ

5 quadrature points:

> fiter5=glmer(resp~age+smoke+(1|id),family=binomial,

data=ohio,nAGQ=5)

Groups Name Variance Std.Dev.

id (Intercept) 4.198 2.049

Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.02398 0.20353 -14.857 < 2e-16 ***

age -0.17319 0.06718 -2.578 0.00994 **

smoke 0.39448 0.26305 1.500 0.13371
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10 quadrature points:

> fiter10=glmer(resp~age+smoke+(1|id),family=binomial

,data=ohio,nAGQ=10)

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 4.614 2.148

Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.08959 0.21557 -14.332 < 2e-16 ***

age -0.17533 0.06762 -2.593 0.00952 **

smoke 0.39799 0.27167 1.465 0.14293

Some sensivity regarding variance estimate. Fixed effects results
quite stable.

Results with 20 quadrature points very similar to those with 10
quadrature points.
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Summary

I logistic and Poisson regression very useful for binary and
count data where linear normal models not appropriate.

I in some applications there is evidence of overdispersion (extra
variance)

I easy to add random effects to model sources of overdispersion
and thereby correctly model correlation between observations
e.g. for same subject.

I thereby we get more trustworthy standard deviations for fixed
effects estimates.

I disadvantage: not easy to interpret random effects variances in
terms of variances and correlations of the response variable Yi .
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Exercises

1. Consider again the epilepsy data. Introduce subject specific
random intercepts. What is the fitted variance for the random
intercepts ? Compare the results regarding fixed effects with
those of the previous analysis.
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